Heat load of bimetallic ribbed tube
https://doi.org/10.15514//ISPRAS-2021-33(5)-17
Abstract
This study is devoted to the problem of numerical modeling of the conjugate heat transfer in a closed-type power installation. The working elements of that are ribbed bimetallic tubes using the openFoam toolbox. The heat transfer process modeling in bimetallic tubes is associated with solving the problem of determining the value of the contact thermal resistance at the metal / metal interface. Considered design of a bimetallic tube involves crimping copper washers on the surface of an aluminum cylindrical tube. Hence, the contact surface of the tube is not isotropic in its properties. A mathematical model of conjugate heat transfer for air / bimetal / coolant medium is proposed. The features of the organization of thermophysical processes at the metal contact interface and at the metal / air and metal / coolant medium are shown. A qualitative comparison of the obtained results with the famous experimental data is carried out. Generalized temperature profiles in the rib longitudinal section are obtained by mathematical modeling. The given distributions of temperature and heat flux make it possible to estimate the contribution of each individual rib to the investigated heat removal process from the air environment. The efficiency of the considered technology of manufacturing a bimetallic finned tube is shown.
About the Authors
Elena Sergeevna BAIMETOVARussian Federation
Senior Lecturer at the Thermal Engines and Installations Department
Albina Firdavesovna GIZZATULLINA
Russian Federation
Postgraduate student
Maria Ravilevna KOROLEVA
Russian Federation
Candidate of physical and mathematical sciences, Associate Professor, Senior Researcher
Olga Vladimirovna MISHCHENKOVA
Russian Federation
Candidate of Physical and Mathematical Sciences, Associate Professor
Fyodor Nikolaevich PUSHKAREV
Russian Federation
Postgraduate student
Alena Alekseevna CHERNOVA
Russian Federation
Candidate of Technical Sciences, Associate Professor, Department of Thermal Engines and Installations
References
1. Федоров В.А., Мильман О.О. и др. Результаты экспериментально-расчетных исследований воздушного потока в цирктрассах воздушных конденсаторов паротурбинных установок. Вестник МГТУ им. Н.Э.Баумана. Сер. Машиностроение, № 5, 2015 г., стр. 87-105 / Fedorov V. A., Mil'man O. et al. Results of experimental and computational analysis of air flow in circle channels of air-cooled condensers of steam power plants. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, № 5, 2015, pp. 87-105 (in Russian).
2. Du Toit C.G., Kroger D.G. Modelling of the recirculation in mechanical-draught heat exchangers. N&O JOERNAAL, vol. 9, № 1, 1993, pp. 2-8.
3. Zhao W., Wang Q., Liu P. The experimental investigation of recirculation of air-cooled system for a large power plant. Energy and Power Engineering, № 2, 2010, pp. 291-297.
4. Xing X., Xianming F. et al. Modeling and Simulation of an Air-cooling Condenser under Transient Conditions. Procedia Engineering, № 31, 2012, pp. 817–822.
5. Чернов Н.С. Технико-экономическая оценка эффективности теплообменных аппаратов. Автомобильная промышленность, №3, 2011 г., стр. 33-35 / Chernov N. S. Evaluation of efficiency of heat exchangers (pipe coil) from pipes with edges on an external surface. Avtomobil'naya promyshlennost', № 3, 2011, pp. 33-35 (in Russian).
6. Koroleva M.R., Saburova E.A., Chernova A.A. Studying the efficiency of cooling and resistance of ribbed tubular elements. Journal of Physics: Conference Series, vol. 1675, 2020, article no. 012009.
7. Кунтыш В.Б, Пиир А.Э. Анализ тепловой эффективности, объемной и массовой характеристик теплообменных секций аппаратов воздушного охлаждения. Химическое и нефтегазовое машиностроение, no. 5, 2009 г., стр. 3-6. / Kuntysh V.B, Piir A.E. Analysis of the thermal efficiency, volume, and weight characteristics of heat exchange sections of air cooling equipment. Chemical and Petroleum Engineering, vol. 45, no. 5-6, 2009, pp. 257-262.
8. Дударев В.В., Филатов С.О., Карлович Т.Б. Методика расчета и анализ коэффициента теплопередачи биметаллических ребристых труб аппаратов воздушного охлаждения с неравномерным внешним загрязнением. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ, том 60, № 3, 2017 г., стр. 237-255. / Dudarev V. V., Filatаu S. O., Karlovich T. B. The Method of Calculation and Analysis of Heat Transfer Coefficient of Bimetallic Finned Tubes of Air Cooling Units with Irregular External Contamination. Energetika. Proceedings of CIS higher education institutions and power engineering associations, vol. 60, № 3, 2017, pр. 237-255 (in Russian).
9. Бессонный А.Н., Кунтыш В.Б., Калейчик Т.П. Методика расчета тепловой и аэродинамической характеристик калориферов из биметаллических труб со спиральными накатными и навитыми алюминиевыми ребрами. Вестник Международной академии холода, no. 3, 2004 г., стр. 16-20. / Bessonnyj A.N., Kuntysh V.B., Kalejchik T.P. Method for calculating the thermal and aerodynamic characteristics of air heaters made of bimetallic pipes with spiral rolling and wound aluminum fins. Journal of International Academy of Refrigeration, no. 3, 2004, pp. 16-20 (in Russian).
10. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. In Proc. of the 4th international symposium on turbulence, heat and mass transfer, 2003, 8 p.
11. Gizzatullina A., Koroleva M. et al. Numerical investigation of cooling down and aerodynamic resistance processes in ribbed tubular elements. In Proc. of the 2020 Ivannikov Ispras Open Conference, 2020, pp. 142-149.
12. Байметова Е.С., Гиззатуллина А.Ф., Пушкарев Ф.Н. Решение задачи сопряженного теплообмена в оребренной трубке с использованием OpenFoam. Химическая физика и мезоскопия, том 23, no. 2, 2021 г., стр. 154-164 / Baimetova E.S., Gizzatullina A.F., Pushkarev F.N. Solving the conjugate heat transfer problem in the ribbed tube with OpenFoam. Chemical physics and mesoscopy, vol. 23, no. 2, 2021, pp. 154-164 (in Russian).
13. Gizzatullina A.A., Mishchenkova O.V., Pushkarev F.N. Applying the scalability apparatus to estimate the thermal efficiency of a single finned tube. Journal of Physics: Conference Series, vol. 2057, 2021, article no. 012014.
14. Koroleva M.R., Saburova E.A., Chernova A.A. Studying the efficiency of cooling and resistance of ribbed tubular elements. Journal of Physics: Conference Series, vol. 1675, 2020, article no. 012009.
15. Жукаускас А.А. Конвективный перенос в теплообменниках. М., Наука, 1982 г., 472 cтр. / Zhukauskas A.A. Convective transfer in heat exchange devices. Moscow, Science, 1982, 472 p.
16. Бендерский Б.Я. Техническая термодинамика и теплопередача: Курс лекций. М.-Ижевск, Институт компьютерных исследований, 2002 г., 264 стр. / Benderskij B.Yа. Technical Thermodynamics and Heat Transfer: Course of Lectures. M.-Izhevsk, Institute of Computer Science, 2002, 264 p.
Review
For citations:
BAIMETOVA E.S., GIZZATULLINA A.F., KOROLEVA M.R., MISHCHENKOVA O.V., PUSHKAREV F.N., CHERNOVA A.A. Heat load of bimetallic ribbed tube. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(5):271-282. (In Russ.) https://doi.org/10.15514//ISPRAS-2021-33(5)-17