Simplified kinetic models of methane combustion to expand the capabilities of the OpenFOAM package and physicochemical libraries
https://doi.org/10.15514/ISPRAS-2021-33(6)-16
Abstract
Simplified mechanisms of combustion of hydrocarbon fuels are considered, on their basis the expansion of the capabilities of the OpenFOAM package and physicochemical libraries, applicable for the numerical simulation of processes occurring in methane-air mixtures, is carried out. A modified mechanism of combustion of hydrocarbon fuel is investigated. The choice of this substance is due to the prospects and practical interest in this type of fuel at the present time. Compares the results obtained by using the solvers created at the MAI and ISP RAS. A physical and mathematical model, numerical algorithms and results of calculations of non-stationary physical and chemical processes occurring in methane-air mixtures are presented. A comparison is made of the values of temperature and concentration of the chemical at constant pressure and enthalpy, the ignition time and the level of values of in are estimated when the state of thermodynamic equilibrium is reached. The process of flow of a methane-air mixture in a tube with reflection of a shock wave incident on the wall is considered. The unsteady equations of gas dynamics are solved numerically, supplemented by the equations of chemical kinetics. The effects of viscosity, thermal conductivity and diffusion are not taken into account. The distributions of the flow parameters behind the reflected shock wave are obtained and analyzed. The propagation of a detonation wave in an oscillatory mode is illustrated. The consistency of the calculation results of the solvers used is shown. Estimates of the possible application of this reduced combustion mechanism are given.
About the Authors
Dmitry Sergeevich KONONOVRussian Federation
Engineer of the Department of Computational Mathematics and Programming
Vladimir Yurevich GIDASPOV
Russian Federation
Doctor of Physical and Mathematical Sciences, Assistant Professor, Senior Researcher of the Department of Computational Mathematics and Programming
Sergei Vladimirovich STRIJHAK
Russian Federation
Candidate of Technical Sciences, Leading Engineer
References
1. Peters N. Turbulent Combustion. Cambridge University Press, 2000, 324 p.
2. Poinsot T., Veynante D. Theoretical and Numerical Combustion. 2nd edition. Edwards, 2005, 540 p.
3. Warnatz J., Maas U., W. Dibble R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th Edition. Springer, 2006, 390 p.
4. Басевич В.Я., Фролов С.М. Глобальные кинетические механизмы, использующиеся при моделировании многостадийного самовоспламенения углеводородов в реагирующих течениях. Химическая физика, том 25, no. 6, 2006. стр. 54-62 / Basevich V.Ya., Frolov S.M. Global kinetic mechanisms used in modeling multistage autoignition of hydrocarbons in reacting flows, Chemical Physics, vol. 25, no. 6, 2006. pp. 54-62 (in Russian).
5. Гурвич Л.В., Вейц И.В. и др. Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х томах. М., Наука, 1979-1982 гг. / Gurvich L.V., Veyts I.V. et al. Thermodynamic properties of individual substances. Reference edition in 4 volumes. M., Nauka, 1979-1982 (in Russian).
6. Гидаспов В.Ю., Кононов Д.С., Северина Н.С. Моделирование воспламенения и детонации метано-воздушных смесей за отраженной ударной волной. Теплофизика высоких температур, том 58, no. 6, 2020 г., стр. 909-914 / Gidaspov V.Y., Kononov D.S., Severina N.S. Simulation of the ignition and detonation of methane-air mixtures behind a reflected shock wave. High Temperature, vol. 58, no. 6, 2020, pp. 846-851.
7. Weller H.G., Tabor G. et al. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, vol. 12, 1998, pp. 620–631.
8. Холодов А.С. Сеточно-характеристические численные методы для многомерных задач механики сплошных сред. Вопросы кибернетики, вып. 15, 1987 г., стр. 140-163 / Kholodov A.S. Grid-characteristic numerical methods for multidimensional problems of continuum mechanics. Cybernetics Issues, issue 15, 1987, pp. 140-163 (in Russian).
9. Годунов С.К., Забродин А.В. и др. Численные решения многомерных задач газовой динамики. М., Наука, 1976 г., 400 стр. / Godunov S.K., Zabrodin A.V. et al. Numerical solution of multidimensional problems of gas dynamics. M., Nauka, 1976, 400 p. (in Russian).
10. Пирумов У.Г. Математическое моделирование в проблемах охраны воздушного бассейна. М., Изд-во МАИ, 2001 г., 340 стр. / Pirumov U.G. Mathematical modeling in the problems of air protection. Moscow, MAI Publishing House, 2001, 340 p. (in Russian).
11. Kraposhin M. Bovtrikova A., Strijhak S. Adaptation of Kurganov-Tadmor Numerical Scheme for Applying in Combination with the PISO Method in Numerical Simulation of Flows in a Wide Range of Mach Numbers. Procedia Computer Science. vol. 66, 2015, pp. 43-52.
12. Васильев А.А. Ячеистые структуры многофронтовой детонационной волны и инициирование (Обзор). Физика горения и взрыва, том 51, вып. 1, 2015 г., стр. 9-30 / Vasil’ev A.A. Cellular structures of a multifront detonation wave and initiation (Review). Combustion, Explosion, and Shock Waves, vol. 51, issue 1, 2015, pp. 1-20.
Review
For citations:
KONONOV D.S., GIDASPOV V.Yu., STRIJHAK S.V. Simplified kinetic models of methane combustion to expand the capabilities of the OpenFOAM package and physicochemical libraries. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(6):228-240. (In Russ.) https://doi.org/10.15514/ISPRAS-2021-33(6)-16