The emergence of contrast structures for galactic magnetic field: theoretical estimates and modeling on GPU
https://doi.org/10.15514/ISPRAS-2021-33(6)-18
Abstract
Magnetic field generation in galaxies turns out to be a significant problem both for cosmic magnetohydrodynamics and mathematical physics. It is based on dynamo mechanism characterising the transition between the energy of medium turbulent motions and the magnetic field energy. The evolution of the field is described with the help of mean field dynamo equations. For galaxies the solutions are commonly found using so-called “no-z” approximation, while the half-thickness of the galactic disc is considered negligible. In nonlinear case mentioned equations admit contrast structure formation, predicted by the singular perturbation theory, describing equations with small parameter at the elder derivative. From astronomical point of view some authors tend to connect such solutions with the spiral structure of the galaxies and the formation of magnetic field reversals (when in different parts of galaxy there are regions with opposite directions of magnetic, divided by a thin transition layer). From numerical point of view finding the solution of two-dimensional system of equations requires large computational resources, for this reason using GPU and parallel calculations turns out to be reasonable. One of the implementation methods is calculating using OpenCL, which allows one to increase the process efficiency several times. OpenCL is a perspective crossplatform standard for development of applications, particularly involving GPU, the efficiency of which is rapidly increasing as the drivers evolve. The present work presents basic theoretical assessments of magnetic field behaviour, which are further confirmed and clarified during the computations. It is shown that the formation of the transition layers is described by fundamentally different mechanisms in radial and azimuthal directions. While radial reversals of the field turn out to be rather stable, all of the azimuthal structures are rapidly blurred due to the nature of the interstellar medium motions. That also indicates the practical impossibility of non-axisymmetric distributions of the field.
About the Authors
Evgenii Aleksandrovich MIKHAILOVRussian Federation
Candidate of Physical and Mathematical Sciences, Senior Researcher
Tatiana Timurovna KHASAEVA
Russian Federation
Second-year Master’s student of the department of mathematics
Igor Olegovich TEPLYAKOV
Russian Federation
Candidate of Technical Sciences, Senior Researcher
References
1. Krause F., Rädler K.-H. Mean-Field Magnetohydrodynamics and Dynamo. Pergamon, 1980, 271 p.
2. Соколов Д.Д. Проблемы магнитного динамо. Успехи физических наук, том 185, no. 6, 2015 г., стр. 643-648 / Sokoloff D.D. Problems of magnetic dynamo. Physics-Uspekhi, vol. 58, no. 6, pp/ 601-605.
3. Степанов Р.А., Фрик П.Г., Соколов Д.Д. Сопряжение уравнений динамо средних полей и каскадной модели турбулентности в проблеме галактического динамо. Вычислительная механика сплошных сред, том. 1, no. 4, 2008 г., стр. 97-108 / Stepanov R., Frick P., Sokoloff D. Coupling of mean-field equation and shell model of turbulence in the context of galactic dynamo problem. Computational Mechanics of Continuous Media, vol. 1, no. 4, 2008, pp. 97-108 (in Russian).
4. Михайлов Е.А. Спектральное разложение решения задачи о генерации магнитных полей галактик в планарном приближении. Вестник Московского университета. Серия 3. Физика. Астрономия, no. 5, 2020 г., стр. 39-44 / Mikhailov E.A. The spectral decomposition of the solution of the problem of generating galactic magnetic fields in the no-z approximation. Moscow University Physics Bulletin, vol. 75, no. 5, pp. 420-426.
5. Mikhailov E.A. Symmetry of the magnetic fields in galactic dynamo and the material arms. Magnetohydrodynamics, vol. 56, no. 4, 2020, pp. 303-315.
6. Mikhailov E., Boneva D., Pashentseva M. No-z model for magnetic fields of different astrophysical objects and stability of the solutions. Data, vol. 6, no. 1, article no. 4.
7. Михайлов Е.А. Задачи с малым параметров и распространение фронтов в теории галактического динамо. Вестник Московского университета. Сер.3. Физика. Астрономия, no. 2, 2015 г., стр. 27-31 / Mikhailov E.A. Problems with a small parameter and propagation of fronts in the galactic dynamo theory. Moscow University Physics Bulletin, vol. 70, no. 2, 2015, pp. 101-106.
8. Moss D., Stepanov R. et al. Multiscale magnetic fields in spiral galaxies: evolution and reversals. Astronomy and Astrophysics, vol. 537, 2012, article no. 68.
9. Beck R., Brandenburg A. et al. Galactic Magnetism: Recent Developments and Perspectives. Annual Review of Astronomy and Astrophysics, vol. 34, 1996, pp.155-206.
10. Arshakian T.G., Beck R. et al. Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array. Astronomy and Astrophysics, vol.494, no. 1, 2009, pp. 21-32.
11. Moss D. On the generation of bisymmetric magnetic field structures in spiral galaxies by tidal interactions. Monthly Notices of Royal Astronomical Society, vol. 275, issue 1, 1995, pp. 191-194.
12. Нефедов, Н.Н. Общая схема асимптотического исследования устойчивых контрастных структур. Нелинейная динамика, том 6, no. 1, 2010 г., стр. 181-186 / Nefyodov N.N. General scheme of asymptotic investigation of stable contrast structures. Nonlinear Dynamics, vol. 6, no. 1, 2010, pp. 181-186 (in Russian).
13. Божевольнов Ю. В., Нефедов Н. Н. Движение фронта в параболической задаче реакция — диффузия // Журнал вычислительной математики и математической физики. — 2010. — Т. 50, № 2. — С. 276–285.
14. Morris D., Berge G. Direction of the galactic magnetic field in the vicinity of the Sun. Astrophysical Journalб vol. 139, 1964, pp. 1388–1392.
15. Manchester R. Pulsar rotation and dispersion measures and the galactic magnetic field. Astrophysical Journal, vol. 172, 1973, pp. 43-52.
16. Beck R. Magnetic fields in spiral galaxies. Astronomy and Astrophysics Review, vol. 24, 2015, article no. 4.
17. Oppermann, N., Junklewitz. et al. An improved map of the galactic Faraday sky. Astronomy and Astrophysics, vol. 542, 2012, article no. A93.
18. C. Horrelou, R. Beck et al. Faraday effects in the spiral galaxy M51. Astronomy and Astrophysics. vol. 265, 1992, pp. 417-428.
19. Frick, P., Stepanov, R. et al. Magnetic and gaseous spiral arms in M83. Astronomy and Astrophysics. vol. 585, 2016, article no. A21.
20. Van Eck C.L., Brown J.C. et al. Modeling the magnetic field in the galactic disk using new rotation measure observations from the Very Large Array. Astrophysical Journal, vol. 728, no. 2, 2011, article no 97.
21. Андреасян Р.Р., Михайлов, Е.А., Андреасян А.Р. Структура и особенности формирования инверсий галактического магнитного поля. Астрономический журнал, том 97, no. 3, 2020 г., стр. 179-189 / Andreasyan R.R., Mikhailov E.A., Andreasyan H.R. Structure and features of the galactic magnetic-field reversals formation. Astronomy Reports, vol. 64, no. 3, 2020, pp. 189-198.
22. Mikhailov E., Khasaeva T. Evolution of the magnetic field reversals in galaxies. Bulgarian Astronomical Journal, vol.31, 2019, pp. 39-50.
23. Ивочкин Ю.П., Виноградов Д.А., Тепляков И.О. Численный расчет магнитного поля с использованием технологии CUDA применительно к моделированию электровихревых течений. Математическое и программное обеспечение систем в промышленной и социальной сферах, no. 2, 2015 г, стр. 13-18 / Ivochkin Y.P., Vinogradov D.A., Teplyakov I.O. Numerical calculation of magnetic field with CUDA technology applied to flow modelling electric vortex flows. Software of Systems in the Industrial and Social Fields, no. 2, 2015, pp. 13-18 (in Russian).
24. Munshi, A., Gaster B.R. et al. OpenCL Programming Guide. Addison-Wesley Professional, 2011, 646 p.
25. Kalling R.C., Evans T.E. et al. Accelerating the numerical simulation of magnetic field lines in tokamaks using the GPU. Fusion Engineering and Design, vol. 86, no. 4-5, 2011, pp. 399-406.
Review
For citations:
MIKHAILOV E.A., KHASAEVA T.T., TEPLYAKOV I.O. The emergence of contrast structures for galactic magnetic field: theoretical estimates and modeling on GPU. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(6):253-264. (In Russ.) https://doi.org/10.15514/ISPRAS-2021-33(6)-18