Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

An algorithm of test generation from functional specification using Open IE model and clustering

https://doi.org/10.15514/ISPRAS-2022-34(2)-2

Abstract

Automated test coverage is a widespread practice in long-live software development projects for now. According to the test development approach, each automated test should reuse functions implemented in test framework. The provided research is aimed at improving the test framework development approach using natural language processing methods. The algorithm includes the following steps: preparation of test scenarios; transformation of scenario paragraphs to syntax tree using pretrained OpenIE model; test steps comparison with test framework interfaces using GloVe model; transformation of the given semantic tree to the Kotlin language code. The paper contains the description of protype of system automatically generating Kotlin language tests from natural language specification. 

About the Authors

Kirill Sergeevich KOBYSHEV
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Postgraduate student at High School of Software Engineering



Sergey Aleksandrovich MOLODYAKOV
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Doctor of Technical Sciences, Professor of High School of Software Engineering



References

1. N. Radziwill. “Freeman Gr. “Reframing the Test Pyramid for Digitally Transformed Organizations”. Software Quality Professional. 2020. vol. 22, №4. pp. 18-25.

2. It. Karac and B. Turhan. “What Do We (Really) Know about Test-Driven Development?” IEEE Software. 2018. vol. 35. №4. pp. 81–85. DOI:10.1109/MS.2018.2801554

3. M. A. Fountoura. “Systematic Approach for Framework Development”. Rio de Janeiro, 1999. 165 p.

4. M. Irshad, R. Britto and K. Petersen. “Adapting Behavior Driven Development (BDD) for large-scale software systems”. Journal of Systems and Software. 2021. №17. 20 p. DOI: 10.1016/j.jss.2021.110944

5. W. Wasira. “Existing Tools for Formal Verification and Formal Methods”. MS Computer Science, Lewis University. 2020. DOI: 10.13140/RG.2.2.12162.22721.

6. A. D. Danilov and V. M. Mugatina. “Verification and testing of complex software products based on neural network models”. Vestnik VGTU [VSTU Bulletin]. 2016. vol. 12. №6. pp. 62-67. (in Russian)

7. G. Angeli, M. Premkumar and Chr. Manning. “Leveraging Linguistic Structure For Open Domain Information Extraction”. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Bejing, 2015. №1. pp. 344–354. DOI: 10.3115/v1/P15-1034.

8. M. Long and Z. Yanqing. “Using Word2Vec to process big text data”. 2015 IEEE International Conference. 2015, San-Jose. №10. DOI: 10.1109/BigData.2015.7364114.

9. A. D. Kovalev, I. V. Nikiforov and P. D. Drobincev. “Automated approach for semantic search in software documentation based on Doc2Vec algorithm”. Informaciono-upravlayuscshiye sistemi [Information control systems]. 2021. №1 (110). pp. 17-27. (in Russian)

10. R. M. Garcia-Teruel and H. Simon-Moreno. “The digital tokenization of property rights. A comparative perspective”. Computer Law & Security Review. 2021. vol. 41. №2. pp. 1-16. DOI:10.1016/j.clsr.2021.105543.

11. B. Vimala and E. Lloyd-Yemoh. “Stemming and Lemmatization: A Comparison of Retrieval Performances”. Lecture Notes on Software Engineering. 2014. №2. pp. 262-267. DOI: 10.7763/LNSE.2014.V2.134.

12. S. Chotirat and P. Meesad. “Part-of-Speech tagging enhancement to natural language processing for Thai wh-question classification with deep learning”. Heliyon. 2020. vol. 7. №10. DOI: 10.1016/j.heliyon.2021.e08216.

13. R. Zmigrod, T. Vieira and R. Cotterell. “On Finding the K-best Non-projective Dependency Trees”. ACL/IJCNLP. 2021. DOI:10.18653/v1/2021.acl-long.106.

14. G. Lecorve and P. Motlicek. “Conversion of Recurrent Neural Network Language Models to Weighted Finite State Transducers for Automatic Speech Recognition”. 13th Annual Conference of the International Speech Communication Association 2012.

15. J. Pennington, R. Socher and Chr. Manning. “Glove: Global Vectors for Word Representation”. EMNLP. 2014. №14. pp. 1532-1543. DOI: 10.3115/v1/D14-1162.

16. I. N. Khasanah. “Sentiment Classification Using fastText Embedding and Deep Learning Model”. Procedia Computer Science. 2021. №189. pp. 343–350. DOI: 10.1016/j.procs.2021.05.103.

17.


Review

For citations:


KOBYSHEV K.S., MOLODYAKOV S.A. An algorithm of test generation from functional specification using Open IE model and clustering. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2022;34(2):17-24. https://doi.org/10.15514/ISPRAS-2022-34(2)-2



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)