Preview

Труды Института системного программирования РАН

Расширенный поиск

Оценка пригодности к использованию нейрокомпьютерных интерфейсов: анализ состояния дел

https://doi.org/10.15514/ISPRAS-2022-34(3)-10

Аннотация

Нейрокомпьютерные интерфейсы (Brain Computer Interfaces, BCI) позволяют пользователям общаться с программной системой посредством когнитивных функций, измеряемых сигналами мозга, которые опознаются с помощью. электроэнцефалографии — ЭЭГ. Наиболее часто используемым методом оценки удобства использования программных приложений BCI являются пользовательские тесты. В пользовательских тестах данные собираются на основе мнений пользователей, получаемых путем анкетирования. Такая оценка требуют много времени, поскольку требуются не только выполнение задания на взаимодействие и заполнение анкет, но также и размещение и калибровку устройства ЭЭГ. Все это делает процесс оценки очень тяжелой задачей для участников теста и может означать, что собранные данные не совсем надежны. Вот почему нас интересует включении сигналов ЭЭГ в процесс оценки удобства пригодности к использованию приложений BCI. Поэтому мы представляем в этой статье результат анализа состояния дел, чтобы определить значимые работы в этой области и будущие направления исследований.

Об авторах

Йоселин Нохеми ОРТЕГА-ХИХОН
Факультет статистики и информатики, Университет Веракрусана
Мексика

Аспирант



Кармен МЕЗУРА-ГОДОЙ
Факультет статистики и информатики, Университет Веракрусана
Мексика

PhD in Computer Science from the University of Savoie in France, Professor



Список литературы

1. Ansari-Asl K., Chanel G., & Pun T. A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. In Proc. of the 2007 15th European Signal Processing Conference, 2007, pp. 1241-1245.

2. Antonenko P., Paas F. et al. Using electroencephalography to measure cognitive load. Educational psychology review, vol. 22, no. 4, 2010, 425-438.

3. Appriou A., Cichocki A., & Lotte F. Towards robust neuroadaptive HCI: exploring modern machine learning methods to estimate mental workload from EEG signals. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, 2018, pp. 1-6.

4. Arai K. Evaluation of users' impact for using the proposed eye based HCI with moving and fixed keyboard by using eeg signals. International Journal of Research and Reviews in Computer Science, vol. 2, no. 6, 2015, 1-7.

5. Arai K., & Mardiyanto R. Eye based HCI with moving keyboard for reducing fatigue effects. In Proc. of the 2011 Eighth International Conference on Information Technology: New Generations, 2011, pp. 417-422.

6. Bhardwaj A., Gupta A. et al. Classification of human emotions from EEG signals using SVM and LDA Classifiers. In Proc. of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 2015, pp. 180-185.

7. Bos D.P.O., Reuderink B. et al. Human-computer interaction for BCI games: Usability and user experience. In Proc. of the 2010 International Conference on Cyberworlds, 2015, pp. 277-281.

8. Charisis V., Hadjidimitriou S. et al. EmoActivity-An EEG-based gamified emotion HCI for augmented artistic expression: The i-Treasures paradigm. Lecture Notes in Computer Science, vol. 9178, 2015, pp. 29-40.

9. Chin J.P., Diehl V.A., & Norman K. L. Development of an instrument measuring user satisfaction of the human-computer interface. In Proc. of the SIGCHI Conference on Human Factors in Computing Systems, 1988, pp. 213-218.

10. Chowdhury A., Meena Y.K. et al. Active physical practice followed by mental practice using BCI-driven hand exoskeleton: a pilot trial for clinical effectiveness and usability. IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 6, 2018, 1786-1795.

11. Crichton N. Visual analogue scale (VAS). Journal of Clinical Nursing, vol. 10, no. 5, 2001, pp. 697-706.

12. Erkan E., & Akbaba M. A study on performance increasing in SSVEP based BCI application. Engineering Science and Technology, an International Journal, vol. 21, issue 3, 2018, 421-427.

13. Freidman V., & Mielke C. A field guide to Usability Testing. Smashing Magazine, 2013, 85 p.

14. Frey J., Daniel M. et al. Framework for electroencephalography-based evaluation of user experience. In Proc. of the 2016 CHI Conference on Human Factors in Computing Systems, 2016, pp. 2283-2294.

15. Frey J., Pommereau L. et al. Assessing the zone of comfort in stereoscopic displays using EEG. In CHI'14 Extended Abstracts on Human Factors in Computing Systems, 2014, pp. 2041-2046.

16. García Ramírez A.R., Da Silva J.F. et al. User’s emotions and usability study of a brain-computer interface applied to people with cerebral palsy. Technologies, vol. 6, no. 1, 2018, article no. 28, 13 p.

17. Gentiletti G., Tabernig C., & Acevedo R. Interfaz cerebro-computadora: Estado del arte y desarrollo en Argentina. Revista Argentina de Bioingeniería, Revista SABI, vol. 13, no. 1, 2007, pp. 22-29 (in Spanish).

18. Hartson H.R., Andre T.S., & Williges R.C. Criteria for evaluating usability evaluation methods. International Journal of Human-Computer Interaction, vol. 15, no. 1, 2013, 145-181.

19. Hosseini S.A., & Khalilzadeh M.A. Emotional stress recognition system using EEG and psychophysiological signals: Using new labelling process of EEG signals in emotional stress state. In Proc. of the 2010 International Conference on Biomedical Engineering and Computer Science, 2010, pp. 1-6.

20. Kortelainen J., & Seppänen T. EEG-based recognition of video-induced emotions: selecting subject-independent feature set. In Proc. of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 4287-4290.

21. Kosiński J., Szklanny K. et al. An analysis of game-related emotions using Emotiv EPOC. In Proc. of the 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), 2018, pp. 913-917.

22. Kumar, J. Affective modelling of users in HCI using EEG. Procedia Computer Science, vol. 84, 2016, pp. 107-114.

23. Kumar N., & Kumar J. Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Computer Science, vol. 84, 2016, pp. 70-78.

24. Laar B.V.D., Gürkök H. et al. Brain–computer interfaces and user experience evaluation. In Towards Practical Brain-Computer Interfaces, Springer, Berlin, Heidelberg, 2012, pp. 223-237.

25. Laubheimer P. Beyond the NPS: Measuring Perceived Usability with the SUS, NASA-TLX, and the Single Ease Question After Tasks and Usability Tests. Nielsen Norman Group, 2018. URL: https://www.nngroup.com/articles/measuring-perceived-usability/.

26. Lewis J.R. IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. International Journal of Human‐Computer Interaction, vol. 7, no. 1, 1995, pp. 57-78.

27. Liu Y., Sourina O., & Nguyen M.K. Real-time EEG-based human emotion recognition and visualization. In Proc. of the 2010 International Conference on Cyberworlds, 2010, pp. 262-269.

28. Lührs M., & Goebel R. Turbo-Satori: a neurofeedback and brain–computer interface toolbox for real-time functional near-infrared spectroscopy. Neurophotonics, vol. 4, issue 4, 2017, article no. 041504, 11 p.

29. Massa S.M., De Giusti A.E., & Pesado P.M. Métodos de evaluación de usabilidad: una propuesta de aplicación en Objetos de Aprendizaje. In Proc. of the Workshop de Investigadores en Ciencias de la Computación, vol. 14, 2012, pp. 922-926 (in Spanish).

30. Murugappan M., Juhari M.R. et al. An Investigation on visual and audiovisual stimulus based emotion recognition using EEG. International Journal of Medical Engineering and Informatics, vol. 1, no. 3, 2009, pp. 342-356.

31. Murugappan M., & Murugappan S. Human emotion recognition through short time Electroencephalogram (EEG) signals using Fast Fourier Transform (FFT). In Proc. of the 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, 2013, pp. 289-294.

32. Murugappan M., Rizon M. et al. Lifting scheme for human emotion recognition using EEG. In Proc. of the 2008 International Symposium on Information Technology, 2008, vol. 2, pp. 1-7.

33. Nielsen J. Usability inspection methods. In Proc. of the Conference Companion on Human Factors in Computing Systems, 1994, pp. 413-414.

34. Nielsen J. Usability Engineering. Morgan Kaufmann, 1993, 376 p.

35. Ortega-Gijón Y.N., & Mezura-Godoy C. Usability evaluation process of brain computer interfaces: an experimental study. In Proc. of the IX Latin American Conference on Human Computer Interaction, 2019, pp. 1-8.

36. Sourina O., Liu Y. et al. EEG-based personalized digital experience. Lecture Notes in Computer Science, vol. 6766, 2011, pp. 591-599.

37. Parra L.C., Spence C.D. et al. Response error correction-a demonstration of improved human-machine performance using real-time EEG monitoring. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, 2003, 173-177.

38. Pasqualotto E., Federici S. et al. Usability of brain computer interfaces. In Everyday Technology for Independence and Care. IOS Press, 2011, pp. 481-488.

39. Pradhapan P., Großekathöfer U. et al. Toward practical BCI solutions for entertainment and art performance. In Brain–Computer Interfaces Handbook: Technological and Theoretical Advances, CRC Press, 2018, pp. 65-115.

40. Putze F., Scherer M., & Schultz T. Starring into the void? Classifying Internal vs. External Attention from EEG. In Proc. of the 9th Nordic Conference on Human-Computer Interaction, 2016, pp. 1-4.

41. Puwakpitiyage C.A., Rao V.R. et al. A Proposed Web Based Real Time Brain Computer Interface (BCI) System for Usability Testing. International Journal of Online & Biomedical Engineering, vol. 15, no. 8, 2019, pp. 111-123.

42. Ramirez R., & Vamvakousis Z. Detecting emotion from EEG signals using the emotive epoc device. Lecture Notes in Computer Science, vol. 7670, 2012, pp. 175-184.

43. Nielsen Norman Group. Usability Testing 101. URL: https://www.nngroup.com/articles/usability-testing-101/.

44. Rhiu I., Lee Y. et al. Toward usability evaluation for brain–computer interfaces. In Brain–Computer Interfaces Handbook, CRC Press, 2018, pp. 563-584.

45. Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research, vol. 104, 2019, pp. 333-339.

46. Spencer D., Warfel T. Card Sorting. Boxes and arrows: A Definitive Guide, 2014. URL: https://boxesandarrows.com/card-sorting-a-definitive-guide/.

47. Stein A., Yotam Y. et al. EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertainment computing, vol. 25, 2018, pp. 14-25.

48. Spüler M. A high-speed brain-computer interface (BCI) using dry EEG electrodes. PloS one, vol. 12, no. 2, 2017, article no. e0172400, 12 p.

49. Taherian S., Selitskiy D. et al. Are we there yet? Evaluating commercial grade brain–computer interface for control of computer applications by individuals with cerebral palsy. Disability and Rehabilitation: Assistive Technology, vol. 12, no. 2, 2017, pp. 165-174.

50. Theofanos M., & Quesenbery W. Towards the design of effective formative test reports. Journal of Usability Studies, vol. 1, no. 1, 2005, pp. 27-45.

51. Tidoni E., Abu-Alqumsan M. et al. Local and remote cooperation with virtual and robotic agents: a P300 BCI study in healthy and people living with spinal cord injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 9, 2017, pp. 1622-1632

52. Valderrama C.E., & Ulloa G. Spectral analysis of physiological parameters for emotion detection. In Proc. of the 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA), 2012, pp. 275-280.

53. Villegas A., Salvatierra E. et al. Reconocimiento de patrones de actividad cerebral asociados a tareas mentales mediante RNA para una interfaz cerebro computador. Revista Ingeniería UC, vol. 15, no. 1, 2008, 88-92 (in Spanish).

54. Wang Q., Sourina O., & Nguyen M. K. Eeg-based «serious» games design for medical applications. In Proc. of the 2010 International Conference on Cyberworlds, 2010, pp. 270-276.

55. Xing X., Wang Y. et al. A high-speed SSVEP-based BCI using dry EEG electrodes. Scientific reports, vol. 8, no. 1, 2018, pp. 1-10.

56. Zhang J., Chen M. et al. PNN for EEG-based Emotion Recognition. In Proc. of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016, pp. 002319-002323.

57. Kurniawan, S. Interaction design: Beyond human–computer interaction by Preece, Sharp and Rogers. Universal Access in the Information Society, vol. 3, issue 3-4, 2001, p. 289.

58. Kitchenham B., Brereton O.P. et al. Systematic literature reviews in software engineering–a systematic literature review. Information and Software Technology, vol. 51, no. 1, 2009, pp. 7-15.

59. Tello-Rodríguez M., Ocharán-Hernández J.O. et al. A design guide for usable web APIs. Programming and Computer Software, vol. 46, issue 8, 2020, pp. 584-593.

60. Lukin V.N., Dzyubenko A.L., & Chechikov Y.B. Approaches to user interface development. Programming and Computer Software, vol. 46, issue 5, 2020, pp. 316-323 / Лукин В.Н., Дзюбенко А.Л., Чечиков Ю.Б. Подходы к разработке пользовательского интерфейса. Программирование, том 46, no. 5, 2020 г., стр. 16-24.


Рецензия

Для цитирования:


ОРТЕГА-ХИХОН Й., МЕЗУРА-ГОДОЙ К. Оценка пригодности к использованию нейрокомпьютерных интерфейсов: анализ состояния дел. Труды Института системного программирования РАН. 2022;34(3):145-158. https://doi.org/10.15514/ISPRAS-2022-34(3)-10

For citation:


ORTEGA-GIJÓN Y., MEZURA-GODOY C. Usability Evaluation of Brain Computer Interfaces: Analysis of State of Art. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2022;34(3):145-158. https://doi.org/10.15514/ISPRAS-2022-34(3)-10



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)