Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Turbulent gas flows in channels of different cross-sectional shapes with mass flow

https://doi.org/10.15514/ISPRAS-2022-34(5)-13

Abstract

The issues of mathematical modeling of turbulent flows in channels with blowing of different cross-sectional shapes are considered. As a result of a series of computational experiments using the OpenFoam tools, the influence of the channel shape on the realized features of flows is investigated. A mathematical model of conjugate heat transfer for the channels under consideration is proposed. Comparison of the results of numerical simulation with the known experimental data has shown the correctness of the proposed models, schemes and algorithms. The topological features of the structure of viscous compressible heat-conducting gas flow in the channels with mass flow of complex shapes have been studied, including the features of the velocity profiles formed in the outlet sections of the channels, the results of calculating the coefficient of non-uniformity of velocity have been described.

About the Authors

Boris Yakovlevich BENDERSKY
Kalashnikov Izhevsk State Technical University
Russian Federation

Doctor of Technical Sciences, Professor, Department of Thermal Engines and Installations



Alena Alekseevna CHERNOVA
Kalashnikov Izhevsk State Technical University
Russian Federation

Candidate of Technical Sciences, Associate Professor, Department of Thermal Engines and Installations



References

1. Липанов А.М., Бобрышев В.П. и др. Численный эксперимент в теории РДТТ. Екатеринбург, УИФ Наука, 1994 г., 301 cтр. / Lipanov A.M., Bobryshev V.P. et al. Numerical Experiment in SFRE theory. Ekaterinburg, UIF Nauka, 1994, 301 p. (in Russian).

2. Алиев А.В., Мищенкова О.В. Математическое моделирование в технике. Ижевский институт компьютерных исследований, 2012 г., 476 стр. / Aliev A.V., Mischenkova O.V. Mathematical Modeling in Engineering. Izhevsk Institute of Computer Research, 2012, 476 p. (in Russian).

3. Ахмадеев В.Ф., Сидоров А.Ф. и др. О трех методах расчета дозвуковых течений в осесимметричных каналах сложной формы. Моделирование в механике. Новосибирск, ИТПМ, том 4 (21), вып. 4, 1990 г., стр. 15-25 / Akhmadeev V. F., Sidorov A.F. et al. On three methods of calculation of subsonic flows in axisymmetric channels of complex shape. Modelling in Mechanics. Novosibirsk, ITAM, vol. 4 (21), 1990, pp. 15-25 (in Russian)

4. Волков К.Н. Нестационарное турбулентное течение газовзвеси в канале при наличии вдува в условиях вынужденных колебаний давления. Прикладная механика и техническая физика, том 54, вып. 2, 2013 г., стр. 65-80 / Volkov K.N. Unsteady turbulent flow of gas suspension in the channel in the presence of blowing under forced pressure oscillations. Applied Mechanics and Technical Physics, vol. 54, issue 2, 2013, pp. 65-80 (in Russian).

5. Kong F., Schetz Y.A. Turbulent boundary layer over solid and porous surface with small roughness. In Papers of the 19th Aerospace Sciences Meeting (1981), published online 2012. DOI: 10.2514/6.1981-418.

6. Волков К.Н., Емельянов В.Н. Газовые течения с массоподводом в каналах и трактах энергоустановок. М., Физматлит, 2011 г., 464 стр. / Volkov K.N., Emelyanov V.N. Gas flows with mass transfer in channels and paths of power plants. Moscow, Fizmatlit, 2011, 464 p. (in Russian).

7. Шумихин А.А., Королева М.Р. и др. Использование схемы WENO для моделирования турбулентного течения в канале с обратным уступом. Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, том 27, вып. 3, 2017 г., стр. 460-469 / A.A. Shumikhin, M.R. Koroleva et al. Application of WENO scheme for simulation of turbulent flow in a channel with backward-facing step. The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, vol. 27, issue 3, 2017, pp. 460-469 (in Russian).

8. Mansour N.N., Kim J., Moin P. Reinolds-stress and dissipation rate budgets in a turbulent channel flow. Journal of Fluid Mechanics, vol. 194, 1988, pp. 15-44.

9. Волков К.Н., Емельянов В.Н. Математические модели трехмерных турбулентных течений в каналах со вдувом. Математическое моделирование, том 16, вып. 10, 2004 г., стр. 41-63 / K.N. Volkov, V.N. Emelyanov. Mathematical models of three-dimensional turbulent flows in the ducts with fluid injection. Mathematical Modeling, vol. 16, issue 10, 2004, pp. 41-63 (in Russian).

10. Benderskiy B.Y., Chernova A.A. Features of heat transfer in a pre-nozzle volume of a solid-propellant rocket motor with charges of complex shapes. Thermophysics and Aeromechanics, vol. 25, issue 2, 2018, pp. 265-272.

11. Koroleva M.R., Mishchenkova O.V. et al. A Theoretical research of the internal gas dynamics processes of measurements of hot air curtain with cross-flow fan. MM Science Journal, June, 2020, pp. 3966-3972.

12. Raeder T., Tenenev V., Chernova A., Koroleva M. Multilevel simulation of direct operated safety valve. In Proc. of the Ivannikov Ispras Open Conference (ISPRAS), 2018, pp. 109-115.

13. Редер Т., Тененев В.А. и др. Численное моделирование газодинамики предохранительного клапана. Интеллектуальные системы в производстве, том 15, вып. 4, 2017 г., с. 4-11 / Raeder T., Tenenev V.A. et al. Numerical modeling of the gas dynamics of the safety valve. Intelligent Systems in Manufacturing, vol. 15, issue 4, 2017, pp. 4-11 (in Russian).

14. Raeder T., Mishchenkova O.V. et al. Nonlinear processes in safety systems for substances with parameters close to a critical state. Russian Journal of Nonlinear Dynamics, vol. 17, issue 1, 2021, pp. 119-138.

15. Chernova A.A. Validation of rans turbulence models for the conjugate heat exchange problem. Russian Journal of Nonlinear Dynamics, vol. 18, issue 1, 2022, pp. 61-82.

16. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. Proc. of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, 2003, pp. 625-632.

17. Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, vol. 32, issue 8, 1994, pp. 1598-1605.

18. Isaev S., Popov I. et al. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall. Acta Astronautica, vol. 163, 2019, pp. 202-207.

19. Benderskiy B., Chernova A., Frankovský P. Numerical simulation of intrachamber processes in the power plant. Applied Sciences, vol. 11, issue 11, 2021, article no. 4990.

20. Benderskiy B.Y., Chernova A.A. Formation of vortex structures in channels with mass injection and their interaction with surfaces in solid-fuel rocket engines. Thermophysics and Aeromechanics, vol. 22, issue 2, 2015, pp. 185-190.

21. Савельев С.К., Емельянов В.Н., Бендерский Б.Я. Экспериментальные методы исследования газодинамики РДТТ. СПб., Недра, 2007 г., 267 стр. / Savelyev S.K., Emelyanov V.N., Bendersky B.Ya. Experimental methods for studying the gas dynamics of solid propellant rocket engines. SPb, Nedra, 2007, 267p.

22. Benderskii B. Ya., Tenenev V.A. Experimental and numerical investigation of flows in complex shaped axisymmetric channels with mass injection. Fluid dynamics, vol. 36, issue 2, 2001, pp. 336-340.


Review

For citations:


BENDERSKY B.Ya., CHERNOVA A.A. Turbulent gas flows in channels of different cross-sectional shapes with mass flow. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2022;34(5):195-204. (In Russ.) https://doi.org/10.15514/ISPRAS-2022-34(5)-13



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)