Modeling of coupled heat transfer in microchannels in OpenFOAM
https://doi.org/10.15514/ISPRAS-2022-34(5)-14
Abstract
In this paper, a numerical simulation of forced convective heat transfer in a silicon microchannel heat sink has been performed using the OpenFOAM tools. A single-phase fluid - water - was used as a heat transfer medium. The model of microchannel heat sink is represented as silicon substrate with length 10 mm, with rectangular microchannels 57 microns wide and 180 microns deep located along the full length of the heat sink. A comparative analysis in the form of cross-platform verification of the numerical results obtained with data from third-party authors was performed. The analysis of the obtained data has shown a good convergence of the study results and the possibility of using the OpenFOAM package as a computational environment for the numerical simulation of the physical processes occurring in channel radiators.
About the Authors
Elena Sergeevna Sergeevna BAIMETOVARussian Federation
Senior Lecturer at the Department of Heat Engines and Plants
Mikhail Evgenevich HVAL'KO
Russian Federation
Postgraduate Student
Aleksej Yurevich ARMYANIN
Russian Federation
Postgraduate Student
References
1. Филимонов С.А., Дектерев А.А. и др. Моделирование сопряженного теплообмена в системе микроканалов при помощи гибридного алгоритма. Сибирский журнал индустриальной математики, том 18, вып. 3, 2015 г., стр. 86-97 / Filimonov S.A., Dekterev A.A. et al. Simulation of conjugate heat transfer in a microchannel system by a hybrid algorithm. Journal of Applied and Industrial Mathematics, vol. 9, issue 4, 2015, pp. 469-479.
2. Li J., Peterson G.P., Cheng P. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. International Journal of Heat and Mass Transfer, vol. 47, issues 19-20, 2004, pp. 4215-4231.
3. Kendall G.E., Griffith P. et al. Small diameter effects on internal flow boiling. In Proc. of the 2001 ASME International Mechanical Engineering Congress and Exposition, 2001, pp. 1-17.
4. Weisberg A., Bau H.H., Zemel J.N. Analysis of microchannels for integrated cooling. International Journal of Heat and Mass Transfer, vol. 35, issue 10, 1992, pp. 2465-2474.
5. Wu H.Y., Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. International Journal of Heat and Mass Transfer, vol. 46, issue 14, 2003, pp. 2519-2525.
6. Li Yu. Implementation of multiple time steps for the multi-physics solver based on chtMultiRegionFoam. In Proceedings of CFD with OpenSource Software, 2016, 50 p.
7. Koroleva M.R., Mishchenkova O.V. et al. A Theoretical research of the internal gas dynamics processes of measurements of hot air curtain with cross-flow fan. MM Science Journal, June 2020, pp. 3966-3972.
8. Байметова Е.С., Гиззатуллина А.Ф., Пушкарев Ф.Н. Решение задачи сопряженного теплообмена в оребренной трубке с использованием OpenFoam. Химическая физика и мезоскопия, том 23, вып. 2, 2021 г., стр. 154-164 / Baimetova E.S., Gizzatullina A.F., Pushkarev F.N. Solving the conjugate heat transfer problem in the ribbed tube with OpenFoam. Chemical physics and mesoscopy, vol. 23, issue 2, 2021, pp. 154-164 (in Russian).
9. Лойцянский Л.Г. Механика жидкости и газа. М., Наука, 1970 г., 904 cтр. / Loytsyansky L.G. Mechanics of liquid and gas. Moscow, Nauka, 1970, 904 p. (in Russian).
Review
For citations:
BAIMETOVA E.S., HVAL'KO M.E., ARMYANIN A.Yu. Modeling of coupled heat transfer in microchannels in OpenFOAM. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2022;34(5):205-214. (In Russ.) https://doi.org/10.15514/ISPRAS-2022-34(5)-14