Peculiarities of numerical simulation of air/heat curtain operation in OpenFOAM
https://doi.org/10.15514/ISPRAS-2023-35(2)-15
Abstract
The issues of mathematical modeling of turbulent heat-conductive flow of compressible viscous medium in the internal volume of the body of an air-thermal curtain equipped with a tangential fan are considered. The solution of the problem is constructed on the basis of averaged Reynolds (Favre) Navier-Stokes equations. The solution of the problem is obtained using the MRF (Multiple Reference Frame) approach, which uses a rotating reference frame, and using a transformation of the basic Navier-Stokes equations in the rotation zone. In order to correctly describe the working processes occurring in the internal volume of the air-thermal curtain and in the environment, modular multiblock meshes are applied in the work, including those allowing to separate rotating and stationary areas. The solution of the set tasks is constructed using the tools of the OpenFOAM package. As a result of the work, the peculiarities of the flow structure in the flowing part of the air-heat curtain are described in detail, and the gas velocities achieved at different fan speeds are estimated. The self-similarity of velocity profiles at the air curtain nozzle outlet is shown.
About the Authors
Sergey GRIGOREVRussian Federation
Postgraduate student of the Department of Thermal Engines and IIstallations
Maria Ravilevna KOROLEVA
Russian Federation
Candidate of Physical and Mathematical Sciences, Associate Professor, Senior Rsearcher
Olga Vladimirovna MISHCHENKOVA
Russian Federation
Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Thermal Engines and Installations
References
1. Frank D., Linden P. The effectiveness of an air curtain in the doorway of a ventilated building. Journal of Fluid Mechanics, vol. 756, 2014, pp. 130-164.
2. Koroleva M.R., Mishchenkova O.V. et al. Theoretical research of the internal gas dynamics processes of measurements of hot air curtain with cross-flow fan. MM Science Journal, June 2020, pp. 3966-3972.
3. Шарфарец Б.П., Дмитриев С.П. Моделирование турбулентного движения жидкости на основе гипотезы Буссинеска. Обзор. Научное приборостроение, том 28, вып. 3, 2018 г., cтр. 101–108 / Sharfarets B.P., Dmitriev S.P. Modeling of turbulent fluid motion based on the Boussinesq hypothesis. Overview. Nauchnoe Priborostroenie, vol. 28, issue 3, 2018, pp. 101—108 (in Russian).
4. Королева М.Р., Сбоева Т.А. и др. Исследование течения воздуха в рабочем объеме воздушно-тепловой завесы. Химическая физика и мезоскопия, том 21, вып. 3, 2019 г., стр. 403-409 / Koroleva M.R., Sboeva T.A. et al. The study of air flow in the working volume of the air-thermal curtain. Chemical Physics and Mesoscopics, vol. 21, issue 3, 2019, pp. 403-409 (im Russian).
5. Darmawan S., Siswantara A.I. et al. Turbulent flow analysis in auxiliary cross-flow runner of a Proto X-3 Bioenergy micro gas turbine using RNG K-ε turbulence model. Journal of Engineering and Applied Sciences, vol. 10, issue 16, 2015, pp. 7086-7091.
6. Khosrowpanah S., Fiuzat A.A., Albertson M.L. Experimental Study of Cross-Flow Turbine. Journal of Hydraulic Engineering, vol. 114, issue 3, 1988, pp. 299-314.
7. Casarsa L., Giannattasio P. Experimental study of the three-dimensional flow field in cross-flow fans. Experimental Thermal and Fluid Science, vol. 35, issue 6, 2011, pp.948-959.
8. Sun K., Ouyang H et al. Experimental and numerical investigations on the eccentric vortex of the cross flow fan. International Journal of Refrigeration, vol. 50, 2015, pp. 146-155.
9. Li J., Hou Y. et al. Window purifying ventilator using a cross-flow fan: Simulation and optimization. Building Simulation, vol. 9, issue 4, 2016, pp. 481-488.
10. Kim T.A., Kim D.W., Park S.K. Journal of Mechanical Science and Technology, vol. 22, issue 10, 2008, pp. 1876-1882.
11. Toffolo A. On the theoretical link between design parameters and performance in cross-flow fans: a numerical and experimental study. Computers & Fluids, vol. 34, issue 1, 2005, pp. 49-66.
12. Lu F.K., Chauhan V.A. et al. Numerical modeling of doorway flow induced by an air curtain. In Proc. of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2006, 7 p
13. OpenFOAM. Free CFD Software. Available at: http://openfoam.org/.
14. Salome. Version 8.3.0. Available at: http://www.salome-platform.org/.
15. Хюлла И.Я. Прохождение воздуха в вентиляторах поперечного потока / Hyulla I.Ya. Passage of air in cross-flow fans. Available at: www.scat-technology.ru/article/vozduhopotok-v-ventilyatore/ (in Russian).
16. Chernova A.A. Validation of rans turbulence models for the conjugate heat exchange problem. Russian Journal of Nonlinear Dynamics, vol. 18, issue 1, 2022, pp. 61-82.
17. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. In Proc.of the Fourth International Symposium on Turbulence, Heat and Mass Transfe, 2003, pp. 625-632.
18. Isaev S., Popov I. et al. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall. Acta Astronautica, vol. 163, part 1, 2019, pp. 202-207.
19. Круглова Е.С. Разработка ресурсосберегающих воздушно-тепловых завес для поддержания нормируемых параметров микроклимата в производственных помещениях АПК. Aвтореферат диссертации на соискание ученой степени кандидата технических наук. Челябинский государственный агроинженерсный университет, 2006 г., 21 стр. / Kruglova E.S. Development of resource-saving air-heat curtains to maintain the normalized parameters of the microclimate in the industrial premises of the agro-industrial complex. Abstract of the dissertation for the degree of candidate of engineering sciences. Chelyabinsk State Agroengineering University, 2006, 21 p. (in Russian)
Review
For citations:
GRIGOREV S., KOROLEVA M.R., MISHCHENKOVA O.V. Peculiarities of numerical simulation of air/heat curtain operation in OpenFOAM. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2023;35(2):215-224. (In Russ.) https://doi.org/10.15514/ISPRAS-2023-35(2)-15