Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Parametric investigations of flows in micronozzles

https://doi.org/10.15514/ISPRAS-2023-35(2)-16

Abstract

The work is devoted to parametric investigations of the krypton flow in a conical micronozzle when flowing into a region with low pressure. The features of the flows are studied at various values of the stagnation pressure in the pre-nozzle volume, including the occurrence of a condensed phase in the flow. Mathematical modeling was carried out on the basis of a numerical solution of the complete system of Navier-Stokes equations, supplemented by the equation for the mass fraction of the condensate. The mathematical model takes into account the change in the coefficients of dynamic viscosity and thermal conductivity depending on the gas temperature. The problem was solved by the control volume method on a block-structured regular grid of quadrangular elements using schemes of the second order of accuracy. The equations were integrated with respect to time using the Runge-Kutta method. The calculations were carried out at stagnation pressures of 5, 10, and 15 atm for single-phase and two-phase flows. The distribution fields of temperature and Mach number in the nozzle and in the space behind it are presented. The axial distribution of pressure, temperature, and Mach number has been studied. It is shown that in the case of a single-phase flow, self-similarity of gas flows is observed. The pressure fields were similar, but in a dimensionless form they coincided to each other. In this case, the identity of the velocity and temperature fields was observed at different values of the stagnation pressure. The self-similarity of the flow is violated in the zone of formation of condensed particles. The dimensions of the zones of local temperature increase, as well as the intensity of heat release, depend on the given stagnation pressure, which is reflected in the velocity characteristics of the flow.

About the Author

Ekaterina Alexandrovna MITRYUKOVA
Kalashnikov Izhevsk State Technical University
Russian Federation

Post-graduate Student of the Department of Heat Engines and Installations.



References

1. Родченкова В., Шахнович И. Микрофлюидные чипы – конструктор для разработчика. Решения компании Dolomite. Аналитика, вып. 3, 2017 г., стр. 60-69 / Rodchenkova V., Shakhnovich. I. Microfluidic chips are a designer for developers. Dolomite solutions. Analytics, issue 3, 2017, pp. 60-69 (in Russian).

2. Зимина Т.М. Миниатюрные аналитические системы биомедицинского назначения – лаборатории на чипе. Биотехносфера, вып. 1, 2009 г., стр. 11-17 / Zimina T.M. Miniature analytical systems for biomedical purposes – laboratories on a chip. Biotechnosphere, issue 1, 2009, pp. 11-17 (in Russian).

3. Александров В.А., Тонков Л.Е. Экспериментальная микрогидродинамика капли жидкости на вибрирующей полимерной подложке. Химическая физика и мезоскопия, том 18, вып. 4, 2016 г., стр. 620-633 / Aleksandrov V.A., Tonkov L.E. Experimental microhydrodynamics of liquid drop on a vibrating polymeric substrate. Chemical Physics and Mesoscopics, vol. 18, issue 4, 2016, pp. 620–633 (in Russian).

4. Лемозерский В.Е., Зимина Т.М. и др. Разработка интегрируемого в микрофлюидную систему электроакустического актюаторного модуля для экспресс-подготовки фракций крови. Биотехносфера, вып. 3, 2017 г., стр. 16-28 / Lemozersky V.E., Zimina T.M. et al. Development of an electroacoustic actuator module integrated into a microfluidic system for express preparation of blood fractions. Biotechnosphere, issue 3, 2017, pp. 16-28 (in Russian).

5. Ахметов А.Т., Валиев А.А. и др. Микрогидродинамика крови при стенозе сосудов Труды Института механики им. Р.Р. Мавлютова, том. 11, вып. 2, 2016 г., стр. 210-217 / Akhmetov A.T., Valiev A.A. et al. Microfluidics of blood in blood vessels stenosis. Proceedings of the Mavlyutov Institute of Mechanics, vol. 11, issue 2, 2016, pp. 210-217 (in Russian).

6. Балабанов А.В., Касимов А.М. Разработка и исследование рабочих характеристик микроструйного генератора Датчики и системы, вып. 7-8, 2019 г., стр. 34-40 / Balabanov A. V., Kasimov A. M. Development and investigation tests of microfluidic generator. Sensors and Systems, issue 7-8, 2019, pp. 34-40 (in Russian).

7. Солнышкина О.А., Батыршин Э.С., Питюк Ю.А. Исследование гидродинамических потоков в микромоделях сред с двойной пористостью. Известия Российской академии наук. Механика жидкости и газа, вып. 4, 2021 г., стр. 9-18 / Solnyshkina O.A., Batyrshin E.S., Pityuk Y.A. Investigation of hydrodynamic flows in micromodels of double porosity media. Fluid Dynamics, vol. 56, issue 4, pp. 451-459.

8. Гаряев А.Б., Прун О.Е., Клименко А.В. Определение оптимального соотношения характеристик микроканальных теплообменных аппаратов. Теплофизика и аэромеханика, том 22, вып. 6, 2015 г., стр. 751-760 / Garyaev A.B., Prun O.E., Klimenko A.V. Evaluation of Optimal Thermal-Hydraulic Characteristics Ratio in Microchannel Heat Exchangers. Thermophysics and Aeromechanics, vol. 22, issue 6, 2015, pp. 723-732.

9. Филимонов С.А., Дектерев А.А. и др. Моделирование сопряженного теплообмена в системе микроканалов при помощи гибридного алгоритма. Сибирский журнал индустриальной математики, том 18, вып. 3, 2015 г., стр. 86–97 / Filimonov S.A., Dekterev A.A. Simulation of conjugate heat transfer in a microchannel system by a hybrid algorithm. Journal of Applied and Industrial Mathematics, vol. 9, issue 4, 2015, pp. 469-479.

10. Korepanov M.A., Koroleva M.R., Mitrukova E.A. Numerical Investigation of Flows with Condenation in Micronozzles. Journal of Physics: Conference Series, vol. 2057, 2021, article no. 012016, 6 pp.

11. Barrot C., Colin S. Design of Tree-Shaped Microchannel Networks Submitted to Simultaneous Pressure Driven and Electro-Osmotic Flows. In Proc. of the 10th International Conference on Nanochannels, Microchannels and Minichannels, 2012, pp. 113-121.

12. Lobasov A.S., Shebeleva A.A., Minakov А.V. The Study of Ethanol and Water Mixing Modes in the T-shaped Micromixers. Journal of Siberian Federal University. Mathematics & Physics, vol. 12, issue 2, 2019, pp. 202–212.

13. Shershnev A.A., Kudryavtsev A.N. Numerical simulation of particle beam focusing in a supersonic nozzle with rectangular cross-section. Journal of Physics. Conference Series, vol. 1404, 2019, article no. 012042, 4 p.

14. Korepanov M.A., Koroleva M.R. et al. Nonlinear Effects of Krypton Flow in a Micronozzle with a Cylindrical Tube. Russian Journal of Nonlinear Dynamics, vol. 18, issue 3, 2022, pp. 411-422.

15. Nechay A.N., Perekalov A.A. et al. Emission properties of targets based on shock waves excited by pulsed laser radiation. Optics & Laser Technology, vol. 142, 2021, article no. 107250.

16. Корепанов М.А., Морар Г., Альес М.Ю. Моделирование гомогенной конденсации криптона в сверхзвуковом сопле. Химическая физика и мезоскопия, том 22, вып. 2, 2020 г., стр. 155-163 / Korepanov M.A., Morar G., Alies M.Yu. Modeling of Homogeneous Condensation of Crypton in the Supersonic Nozzle. Chemical physics and mesoscopy, vol. 22, issue 2, 2020, pp. 155-163 (in Russian).

17. Рабинович В.А., Вассерман А.А. и др. Теплофизические свойства неона, аргона, криптона и ксенона. М., Изд-во стандартов, 1975 г., 636 стр. / Rabinovich V.A., Vasserman A.A. et al. Thermophysical properties of neon, argon, krypton and xenon. M., Publishing house of standards, 1975, 636 p. (in Russian).

18. R.C. Reid, Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids. McGraw-Hill, 1977, 688 p.

19. Chernova A.A. Validation of RANS turbulence models for the conjugate heat exchange problem. Russian Journal of Nonlinear Dynamics, vol. 18, issue 1, 2022, pp. 61-82.


Review

For citations:


MITRYUKOVA E.A. Parametric investigations of flows in micronozzles. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2023;35(2):225-234. (In Russ.) https://doi.org/10.15514/ISPRAS-2023-35(2)-16



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)