On the Issue of Using the Developed Software in the Educational Process for the Study of Acoustic Paths of Magnetostrictive Displacement Transducers
https://doi.org/10.15514/ISPRAS-2023-35(3)-3
Abstract
The article is devoted to the research of the processes arising during the formation, translation and reading of information signals in the acoustic paths of magnetostrictive linear and angular displacement transducers. Mathematical models are given that make it possible to calculate the magnetic fields of annular permanent magnets and those formed by current pulses when they flow in a waveguide medium. To calculate the magnetization of the waveguide, a numerical method was developed that allows taking into account the magnetization of the waveguide material at a previous time. Mathematical models are also given to calculate the parameters of the magnetic flux of the solenoid and the output signal. Mathematical models for calculating permanent magnet magnetic fields, the developed numerical method and mathematical models for the formation of magnetic flux and output signal were implemented in the developed software used in the educational process. The research results, as well as refined and developed methods for calculating magnetic fields and the numerical method can be used to study magnetostrictive devices both at the stage of their design and operation, which reduces their final cost. It should also be noted that the article does not address issues related to the processing of the output signal, which provides opportunities for further research and further modification of the software.
About the Authors
Artem Alekseevich IVZANOVRussian Federation
4th–year student with a degree in Software Engineering on 09.03.04.
Aleksander Anatolievich VORONTSOV
Russian Federation
Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Programming
Yuriy Nikolaevich SLESAREV
Russian Federation
Doctor of Technical Sciences, Associate Professor, Professor of the Department of Automation and Control
References
1. Хогленд А. Цифровая магнитная запись. М.: Советское радио, 1967. 280 с. / Hoagland A. Digital Magnetic Recording. M.: Soviet radio, 1967. 280 P.
2. Not Just Another Self- Consistent Magnetic Recording Model/ G.G. Hughes, D.S. Bloomberg, V. Castelli, R. Hoffman// IEEE Trans. Magn.- 1981.- MAG-17, № 2.- P. 1192-1199.
3. Computer simulation of high- density multiple transition in magnetic disk recording/ K. Nichimoto, Y. Nagao, Y. Suganuma, H. Tonaka// IEEE Trans. Magn.- 1974.- MAG.10.- №3.- P. 769-775.
4. George D.J., King S. F., Carr A.R. A self-Consistent Calculation of the Magnetic Transition Recording on a Thin Film Disc.- IEEE Transaction on Magnetics, June, 1971, p.240-243.
5. Ивасаки С. Динамическая модель процесса магнитной записи/ С. Ивасаки, Т. Судзуки // Проблемы магнитной записи: Пер. с англ. /Под ред. В.Г. Корольков.- М.: Энергия, 1975.- С. 25-34. / Iwasaki S. Dynamic model of the magnetic recording process/ S. Iwasaki, T. Suzuki // Problems of magnetic recording: Translated from English /Edited by V.G. Korolkov.- M.: Energiya, 1975.- pp. 25-34.
6. Михайлов В.И. Запоминающие устройства на оптических дисках / В.И. Михайлов, Г.И. Князев, П.П. Макарычев. -Москва: Радио и связь, 1991.-224 с. / Mikhailov V.I. Storage devices on optical disks/V.I. Mikhailov, G.I. Knyazev, P.P. Makarychev. -Moscow: Radio and Communications, 1991.-224 P.
7. Расчет электрических цепей и электромагнитных полей на ЭВМ/ Александрова М.Г., Белянин А.Н., Брукнер и др.: Под ред. Л. В. Данилов и Е. С. Филиппов. – Москва: Радио и связь, 1983. – 344 с. / Calculation of electrical circuits and electromagnetic fields on a computer/ M. G. Alexandrova, A. N. Belyanin, Bruckner et al.: Ed. L. V. Danilov and E. S. Filippov. – Moscow: Radio and communication, 1983. – 344 p.
8. Слесарев Ю. Н. Исследование аксиальной составляющей магнитного поля кольцевого магнита / Ю. Н. Слесарев, А.А. Воронцов//XX1 век: Итоги прошлого и проблемы настоящего. 2018 №4(44) Том 7, с. 92-96. / Slesarev Yu. N. Investigation of the axial component of the magnetic field of the ring magnet / Yu. N. Slesarev, AA Vorontsov //XX1 century: the results of the past and the problems of the present 2018 №4(44) Vol. 7, p. 92-96. /
9. Jen S. Magnetic and magneto-mechanical vibration properties of non-oriented electrical steel. / S. Jen, Y. Lin, C. Hsu, K. Lin // 2015 IEEE International Magnetics Conference (INTERMAG). – 2015. PP. 1 – 1.
10. N. Mohan, M. Sachdev, "A Static Power Reduction Technique for Ternary Content Addressable Memories," Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2004.
11. Martyshkin A I. Basic operation principles of associate coprocessor module for specialized computer systems based on programmable logical integral schemes. Journal of Fundamental and Applied Sciences, 2018, no. 10(6S), pp. 1449-1463.
12. Mathematical Modeling of Magnetic Fields of the Permanent Magnets and Solenoids, and Comparing the Results Obtained. Slesarev U.N., Mikhajlov P.G. and Vorontsov A.A. International Journal of Applied Engineering Research (IJAER) Volume 11, Number 20 (2016) pp. 10338–10342.
13. Vorontsov A.A., Slesarev Yu.N. Mathematical Modeling and Experimental Check of Output Signals of Magnetostrictive Converters of Movement. 2019 International Russian Automation Conference (RusAutoCon). – 2019. DOI 10.1109/RUSAUTOCON.2019.8867715.
14. Кулинг Х., Справочник по физике: Пер. с нем./ Под ред. Е. М. Лейкина. – М.: Мир, 1983. – 520 с./ Kuhling H., Handbook of physics: TRANS. with it./ Under the editorship of E. M. Leykin. – M.: Mir, 1983. – 520 P.
15. Бессонов Л. А. Теоретические основы электротехники. Электромагнитное поле: Учебник. – 9-е изд., перераб. и доп.. – М: Гардарики, 2001. – 528 с. / Bessonov L. A. Theoretical bases of electrical engineering. Electromagnetic field: Textbook. – 9th ed., – M: Gardariki, 2001. – 528 P.
16. Jia Yu. Fatigue Characteristics of Magnetostrictive Thin-Film Coated Surface Acoustic Wave Devices for Sensing Magnetic Field. / Y.Jia, W.Wang, Yu.Sun, M.Liu, X.Xue, Yu.Liang, Z.Du, J.Luo. // IEEE Access. - 2020. - Vol. 8. - P. 38347 - 38354. DOI 10.1109/ACCESS.2020.2976052.
17. Li Yu. High-Frequency Output Characteristics of Giant Magnetostrictive Transducer. / Yu.Li, W.Huang, B.Wang, L.Weng // IEEE Transactions on Magnetics. – 2019. - Vol. 55 (Issue 6). DOI 10.1109/TMAG.2019.2910854.
18. Купалян С. Д. Теоретические основы электротехники. Часть 3. Электромагнитное поле. Издание 3-е, исправленное и дополненное. – М.: Энергия, 1970. – 248 с./ Kupalyan S. D. Theoretical bases of electrical engineering. Part 3. Electromagnetic field. 3rd edition, revised and expanded. – M.: Energy, 1970. – 248 P.
19. Cozzolino J. Magnet engineering and test results of the high field magnet R&D program at BNL. / J. Cozzolino, M. Anerella, J. Escallier, G. Ganetis, A. Ghosh, R. Gupta, M. Harrison, A. Jain, A. Marone, J. Muratore, B. Parker, W. Sampson, R. Soika, P. Wanderer // IEEE Transactions on Applied Superconductivity. – 2003. - Vol.13, Issue 2, PP. 1347 – 1350.
20. Pradhan S. First Engineering Validation Results of SST-1 TF Magnets System. /S. Pradhan, K. Doshi, A. Sharma, U. Prasad, Y. Khristi, V. Tanna, Z. Khan, A. Varadharajalu, D. Sharma, M. Vora, A. Singh, B. Parghi, M. Banaudha, J. Dhongde, P. Varmora, D. Patel // IEEE Transactions on Applied Superconductivity. – 2014. - Vol. 24, Issue 3, Art. Seq. Num. 4301904.
Review
For citations:
IVZANOV A.A., VORONTSOV A.A., SLESAREV Yu.N. On the Issue of Using the Developed Software in the Educational Process for the Study of Acoustic Paths of Magnetostrictive Displacement Transducers. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2023;35(3):47-62. (In Russ.) https://doi.org/10.15514/ISPRAS-2023-35(3)-3