Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Numerical Simulation of Particulate Matter Transport in the Atmospheric Urban Boundary Layer Using Lagrangian Approach: Physical Problems and Parallel Implementation

https://doi.org/10.15514/ISPRAS-2023-35(4)-8

Abstract

This paper presents the results of the development of a numerical model of the Lagrangian particle transport and the application of parallel computation methods to increase the efficiency of the software implementation of the model. The model is a software package allowing calculations of transport and deposition of aerosol particles taking into account the properties of particles and input data describing atmospheric conditions and the underlying surface geometry. The dynamic core, physical parameterizations, numerical implementation, and algorithm of the model are described. Initially, the model has been used for computationally low-intensive problems. In this paper, given the need to use the model in computationally intensive problems, we conduct optimization of the sequential software implementation of the model, as well as creation of software implementations of the model with the use of parallel computing technologies OpenMP, MPI, CUDA. The results of testing of different implementations of the model show that optimization of the most computationally complex blocks in the sequential version of the model can reduce the execution time by 27%, at the same time the use of parallel computing technologies allows to achieve acceleration by several orders of magnitude. The use of OpenMP in dynamic block of the model resulted in acceleration of block up to 4 times, the use of MPI – up to 8 times, the use of CUDA – up to 16 times, all other conditions being equal. Recommendations on the choice of parallel computing technology depending on the properties of the computing system are proposed.

About the Authors

Alexander Ivanovich VARENTSOV
Lomonosov Moscow State University, Research Computing Center, Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation

Postgraduate student of the Department of Meteorology and Climatology, Faculty of Geography, Lomonosov Moscow State University. Research interests: numerical modeling of aerosol transport in the atmosphere, simulation of urban microclimate and air quality, climate change and weather hazards, seasonal forecasts.



Ochir Anatolievich IMEEV
Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation

Master student of the Department of Computing Technologies and Modeling, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University. Research interests: computational processes optimization, parallel computing, mathematical modeling of atmospheric processes.



Andrey Vasilievich GLAZUNOV
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Phys.-Math). Leading Specialist of the Laboratory of Mathematical Modeling of Geophysical Boundary Layers, Research Computing Center, Lomonosov Moscow State University. Research interests: mathematical modeling, numerical methods, physics of geophysical boundary layers, turbulence, hydrodynamics, climate modeling, parallel computing.



Evgeniy Valerievich MORTIKOV
Lomonosov Moscow State University, Research Computing Center, Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Phys.-Math.). Head of the Laboratory of Mathematical Modeling of Geophysical Boundary Layers, Research Computing Center, Lomonosov Moscow State University. Research interests: mathematical modeling, numerical methods, physics of geophysical boundary layers, turbulence, hydrodynamics, climate modeling, parallel computing.



Viktor Mihajlovich STEPANENKO
Lomonosov Moscow State University, Research Computing Center, Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences
Russian Federation

Dr. Sci. (Phys.-Math.). Deputy Director of Research Computing Center, Lomonosov Moscow State University. Research interests: mathematical modeling of the active layer and terrestrial ecosystems, mathematical modeling of terrestrial water bodies and watercourses, physics of geophysical boundary layers and turbulence, geophysical hydrodynamics, climate modeling, parallel computing.



References

1. Thomson D. J., Wilson J. D. History of Lagrangian Stochastic Models for Turbulent Dispersion // Geo-physical Monograph Series / Lin J, Brunner D, Gerbig C, Stohl A, Luhar A, Webley P. Washing-ton, D. C. (eds.): American Geophysical Union, 2013. pp. 19–36. doi: 10.1029/2012GM001238.

2. Maronga B., Gryschka M., Heinze R., Hoffmann F., Kanani-Sühring F., Keck M., Ketelsen K., Letzel M. O., Sühring M., Raasch S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, re-cent developments, and future perspectives // Geosci. Model Dev. 2015, vol. 8(8), pp. 2515–2551. doi: 10.5194/gmd-8-2515-2015.

3. Huttner S. Further development and application of the 3D microclimate simulation ENVI-met // 2012.

4. Sofiev M., Vira J., Kouznetsov R., Prank M., Soares J., Genikhovich E. Construction of the SILAM Eu-lerian atmospheric dispersion model based on the advection algorithm of Michael Galperin // Geosci. Model Dev. 2015, vol. 8(11), pp. 3497–3522. doi: 10.5194/gmd-8-3497-2015.

5. Glazunov A., Rannik Ü., Stepanenko V., Lykosov V., Auvinen M., Vesala T., Mammarella I. Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer // Geosci. Model Dev. 2016, vol. 9(9), pp. 2925–2949. doi: 10.5194/gmd-9-2925-2016.

6. Auvinen M., Järvi L., Hellsten A., Rannik Ü., Vesala T. Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling // Geosci. Model Dev. 2017. Т. 10. № 11. С. 4187–4205. https://doi.org/10.5194/gmd-10-4187-2017.

7. Simon H., Heusinger J., Sinsel T., Weber S., Bruse M. Implementation of a Lagrangian Stochastic Particle Trajectory Model (LaStTraM) to Simulate Concentration and Flux Footprints Using the Microclimate Model ENVI-Met // Atmosphere. 2021, vol. 12(8), pp. 977. doi: 10.3390/atmos12080977.

8. Stein A. F., Draxler R. R., Rolph G. D., Stunder B. J. B., Cohen M. D., Ngan F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System // Bulletin of the American Meteorological Society. 2015, vol. 96(12), pp. 2059–2077. doi: 10.1175/BAMS-D-14-00110.1.

9. Ansys Fluent. Theory Guide 12.0. [Электронный ресурс]. URL: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm (access: 01.05.2023).

10. Morsi S. A., Alexander A. J. An investigation of particle trajectories in two-phase flow systems // J. Fluid Mech. 1972, vol. 55(02), 193 p. doi: 10.1017/S0022112072001806.

11. Fletcher N. H. The physics of rainclouds. Cambridge University Press // Quarterly Journal of the Royal Meteorological Society. 1962, № 378 (88). C. 559–559. doi: 10.1002/qj.49708837821.

12. Budd W. F. The Drifting of Nonuniform Snow Particles. Washington, D. C.: American Geophysical Union, 1966, pp. 59–70. doi: 10.1029/AR009p0059.

13. Wamser C., Lykossov V. N. On the friction velocity during blowing snow // Beitr Phys Atmosph. 1995, vol. 68(1), pp. 85–94. https://epic.awi.de/id/eprint/3270/.

14. Pope S. B. Turbulent Flows: Cambridge University Press, 2000, Issue 1. doi: 10.1017/CBO9780511840531.

15. Durbin P. A. Stochastic differential equations and turbulent dispersion // NASA, 1983. https://ntrs.nasa.gov/citations/19830014275.

16. Boughton B. A., Delaurentis J. M., Dunn W. E. A stochastic model of particle dispersion in the atmosphere // Boundary-Layer Meteorol. 1987. Т. 40. № 1–2. С. 147–163. https://doi.org/10.1007/BF00140073.

17. Reynolds A. M., Cohen J. E. Stochastic simulation of heavy-particle trajectories in turbulent flows // Physics of Fluids. 2002, vol. 14(1), pp. 342–351. doi: 10.1063/1.1426392.

18. Blocken B. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? // Build. Simul. 2018, vol. 11(5), pp. 821–870. doi: 10.1007/s12273-018-0459-3.

19. ENVI-met – Decoding urban nature. URL: https://www.envi-met.com/ (access: 01.05.2023).

20. Kadantsev E., Mortikov E., Zilitinkevich S. The resistance law for stably stratified atmospheric planetary boundary layers // Q J R Meteorol Soc. 2021, vol. 147(737). pp. 2233–2243. doi: 10.1002/qj.4019.

21. Tkachenko E. V., Debolskiy A. V., Mortikov E. V. Intercomparison of Subgrid Scale Models in Large-Eddy Simulation of Sunset Atmospheric Boundary Layer Turbulence: Computational Aspects // Lobachevskii J Math. 2021, vol. 42(7), pp. 1580–1595. doi: 10.1134/S1995080221070234.

22. Varentsov A. I., Stepanenko V. M., Mortikov E. V., Konstantinov P.I. Numerical simulation of particle transport in the urban boundary layer with implications for SARS-CoV-2 virion distribution // IOP Conf. Ser.: Earth Environ. Sci. 2020, vol. 611(1), pp. 012017. doi: 10.1088/1755-1315/611/1/012017.

23. Varentsov A. I., Stepanenko V. M., Konstantinov P. I. High-resolution simulation of particle transport in the urban atmospheric boundary layer // IOP Conf. Ser.: Earth Environ. Sci. 2019, vol. 386(1), 012045. doi: 10.1088/1755-1315/386/1/012045.

24. Glazunov A. V., Debolskiy A. V., Mortikov E. V. Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its Evaluation Based on Large-Eddy Simulations // Supercomputing Frontiers and Innovations. 2021, vol. 8(4), pp. 100–116. doi: 10.14529/jsfi210409.

25. Glazunov A., Mortikov E., Debolskiy A. Studies of Stable Stratification Effect on Dynamic and Thermal Roughness Lengths of Urban-Type Canopy Using Large-Eddy Simulation // Journal of the Atmospheric Sciences. 2023, vol. 80(1), pp. 31–48. doi: 10.1175/JAS-D-22-0044.1.


Review

For citations:


VARENTSOV A.I., IMEEV O.A., GLAZUNOV A.V., MORTIKOV E.V., STEPANENKO V.M. Numerical Simulation of Particulate Matter Transport in the Atmospheric Urban Boundary Layer Using Lagrangian Approach: Physical Problems and Parallel Implementation. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2023;35(4):145-164. (In Russ.) https://doi.org/10.15514/ISPRAS-2023-35(4)-8



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)