Modelling the Dynamics of Electrified Particle Flow during Wind Drift using OpenFoam
https://doi.org/10.15514/ISPRAS-2022-35(5)-18
Abstract
We study the generation of dust aerosol in the wind-driven cascading motion of charged particles over an irregular surface. The particles move under the influence of air flow over two elements of ripple type on an aeolian surface. Behind the obstacles the flow of saltation particles becomes non-uniform, the character of motion is noted by quasi-periodicity. The problem of including electrostatic effects into the hydrodynamic model, in which the mutual influence of particles and air medium is taken into account, was solved. A parametric model is proposed, which allows taking into account the chargeability of dust particles and the underlying surface in modeling wind transport. Computational experiments are carried out using the open source OpenFOAM package, the Eulerian-Lagrangian turbulent k-ω-model. Accordingly, the dynamics of charged particles is considered taking into account the electrification of the surface itself. From the results of computational experiments for different density characteristics of particles charged homonymously with the surface, the influence of the electric field on the frequency of change of the number of particles in the flow, on the scattering of values of velocities and the height of particle hops, as well as on the weakening of the effect of particles on the medium behind obstacles is estimated. When the influence of electrostatic effects is taken into account, an increase in the disturbing effect of particles flying after obstacles on the air medium is revealed (the distance from the obstacle increases, more local areas of disturbance appear). A decrease in the dispersion value is noted for the velocities of hopping particles. The height of particle jumps increases, which is confirmed by known experiments. The lower value of characteristic frequencies of change in the number of particles in the flow decreases. The non-uniformity of the particle flow determines changes in the intensity of dust aerosol generation.
Keywords
About the Authors
Elena Aleksandrovna MALINOVSKAYARussian Federation
Cand. Sci. (Phys.-Math.), researcher at the Laboratory of Geophysical Hydrodynamics at the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences since 2018. Research interests: study of dynamic and exchange processes at the interface between the atmosphere and the underlying surface, mathematical and numerical modeling of the wind removal of mineral aerosols.
Gennady Ilyich GORCHAKOV
Russian Federation
Dr. Sci. (Phys.-Math.), Professor, Head of the Laboratory of Optics and Aerosol Microphysics since 1985. Area of scientific interests: atmospheric physics, atmospheric optics, atmospheric aerosol, atmospheric electricity, atmospheric ecology.
Alexey Vladimirovich KARPOV
Russian Federation
Senior researcher since 2017. Area of scientific interests: atmospheric aerosol, trace gases, radiation effects of aerosol, aerosol generation in deserted areas.
Leonid Olegovich MAKSIMENKOV
Russian Federation
Researcher in the laboratory of atmospheric transfer modelling IAP RAS from 2021. Research interests: Mathematical modelling, numerical methods, software data processing.
Oleg Igorevich DATSENKO
Russian Federation
Junior researcher since 2022. Area of scientific interests: wind-sand flux, natural and anthropogenic aerosols, atmospheric pollution, spatiotemporal variability.
References
1. Schmidt D.S., Schmidt R.A., Dent J.D. Electrostatic force on saltating sand. Journal of Geophysical Research: Atmospheres, 103(D8), 1998. p. 8997-9001.
2. Kok J.F., Lacks D.J. Electrification of granular systems of identical insulators. Physical Review E., V. 79(5), 1998, pp. 051304.
3. Бютнер Э.К. Динамика приповерхностного слоя воздуха. Л.: Гидрометиздат, 1978. с. 156.
4. Anderson R. S., Hallet B. Sediment transport by wind: toward a general model. Geological Society of America Bulletin, 97(5), 1986, pp. 523-535.
5. Dey S., Ali S. Z. Advances in modeling of bed particle entrainment sheared by turbulent flow. Physics of Fluids, 30(6), 2018, pp. 061301.
6. Huang G. et al. Large-Eddy Simulation of Erosion and Deposition over Multiple Two-Dimensional Gaussian Hills in a Turbulent Boundary Layer. Boundary-Layer Meteorology, 2019, pp. 1-30.
7. Малиновская Е.А. Модель отрыва песчаной частицы ветром. Известия РАН. Физика атмосферы и океана, 2017, 53(5), с.588-596.
8. Семенов О.Е. Введение в экспериментальную метеорологию и климатологию песчаных бурь. Алматы, 2011, 580 с.
9. Чхетиани О. Г. , Калашник М. В., Ингель Л. Х. Генерация “теплового ветра” над неоднородно нагретой волнистой поверхностью. Известия РАН. Физика атмосферы и океана, 49(2), 2013, c. 137–143
10. Shao Y. Physics and modeling of wind erosion. Springer Science & Business Media, 2008, 452 p.
11. Rasmussen K. R., Kok J. F., Merrison J. P. Enhancement in wind-driven sand transport by electric fields. Planetary and Space Science, 57(7), 2009, pp. 804-808.
12. Esposito F. et al. The role of the atmospheric electric field in the dust‐lifting process. Geophysical Research Letters, 43(10), 2016, pp. 5501-5508
13. Малиновская Е. А. и др. О связи приземного электрического поля и аридного аэрозоля при различных ветровых условиях. Доклады Российской академии наук. Науки о Земле, 502(2), 2022, c. 115-124.
14. Malinovskaya E.A., Gorchakov G.I., Karpov A.V., Maksimenkov L.O., Datsenko O.I.On the conditions of the emergence of a periodic mode of saltating flow. Известия РАН. Физика атмосферы и океана, 2023 (in press).
15. Tong D., Huang N. Numerical simulation of saltating particles in atmospheric boundary layer over flat bed and sand ripples. Journal of Geophysical Research: Atmospheres, 117(16), 2012
16. Huang G. et al. Large-eddy simulation of erosion and deposition over multiple two-dimensional gaussian hills in a turbulent boundary layer. Boundary-Layer Meteorology, 173, 2019, pp. 193-222.
17. Gu Z. et al. Numerical simulation of dust lifting within dust devils—Simulation of an intense vortex. Journal of the atmospheric sciences, 63(10), 2006, pp. 2630-2641.
18. Дерябина М.С., Мартынов С.И. Моделирование течения вязкой жидкости с частицами через ячейки пористой среды. Вычисл. мех. сплош. cред, 9(4), 2016, pp. 420-429. https://doi.org/10.7242/1999-6691/2016.9.4.35
19. Мартынов С.И., Ткач Л.Ю. Динамика цепочечных агрегатов частиц в потоке вязкой жидкости. Ж. вычисл. матем. и матем. физ., 56(5), 2016, c. 840-855. https://doi.org/10.7868/S004446691605015X
20. Dupont S., Bergametti G., Simoëns S. Modeling aeolian erosion in presence of vegetation. J. Geophys. Res. Earth Surface, 119, 2014, pp. 168-187.
21. Araújo A.D., Parteli E.J.R., Pöschel T., Andrade J.S., Herrmann H.J. Numerical modeling of the wind flow over a transverse dune. Scientific reports. 3, 2013, pp. 2858.
22. Dey S., Ali S.Z. Advances in modeling of bed particle entrainment sheared by turbulent flow. Phys. Fluid, 30, 2018, pp. 061301.
23. Siminovich A., Elperin T., Katra I., Kok J.F., Sullivan R., Silvestro S., Yizhaq H. Numerical study of shear stress distribution over sand ripples under terrestrial and Martian conditions. J. Geophys. Res. Planets, 124, 2019, pp. 175-185.
24. The OpenFOAM® Foundation. http://www.openfoam.org/index.php
25. Michelsen B., Strobl S., Parteli E.J.R., Pöschel T. Two-dimensional airflow modeling underpredicts the wind velocity over dunes. Scientific reports, 5. 2015, pp 16572. https://doi.org/10.1038/srep16572
26. Ali M.S.M., Salim S.A.Z.S., Ismail M.H., Muhamad S., Mahzan M.I. Aeolian tones radiated from flow over bluff bodies // Open Mech. Eng. J., 7, 2013, pp. 48-57. https://doi.org/10.2174/1874155X01307010048
27. Gu.J. Numerical modeling of the wind flow over a transverse dune. Scientific reports, 3. 2013, pp.2858.
28. Malinovskaya E. A., Chkhetiani O. G. On Conditions for the Wind Removal of Soil Particles. Journal of Applied Mechanics and Technical Physics, 62(7), 2021, pp. 1117-1131.
29. Malinovskaya E.A. Simulation of the flow around 3D surfaces in the study of changes in aeolian relief forms. International Young Scientists School and Conference on Computational Information Technologies for Environmental Sciences CITES '2019, 2019, p.192-195.
30. Malinovskaya E. A., Chkhetiani O. G. Modeling of near-surface flows over an aeolian relief. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 386(1), 2019, pp. 012030.
31. Попов В.Л. Механика контактного взаимодействия и физика трения. От нанотрибологии до динамики землетрясений. Москва: Издательство Физматлит, 2013, c.213
32. Tsuji Y., Tanaka T., Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 71(3), 1992, 239-250.
33. Горчаков Г. И. и др. Удельный заряд сальтирующих песчинок на опустыненных территориях. Доклады Академии наук, 456(4), 2014, c. 476-476.
34. Gorchakov G. I. et al. Quasiperiodic saltation in the windsand flux over desertified areas. Atmospheric and oceanic optics, 29, 2016, 501-506.
35. Anderson R. S., Hallet B. Sediment transport by wind: toward a general model. Geological Society of America Bulletin. 97(5), 1986, С. 523-535.
36. Almeida M. P., Andrade Jr J. S., Herrmann H. J. Aeolian transport layer. Physical review letters. 2006, 96(1), 018001.
37. Malinovskaya E.A., Gorchakova G.I., Karpov A. V., Maksimenkov L.O., Datsenko O.I. On the Conditions of the Emergence of a Periodic Mode of Saltating Flow. Izvestiya, Atmospheric and Oceanic Physics, 2023, 59(6),749–759.
Review
For citations:
MALINOVSKAYA E.A., GORCHAKOV G.I., KARPOV A.V., MAKSIMENKOV L.O., DATSENKO O.I. Modelling the Dynamics of Electrified Particle Flow during Wind Drift using OpenFoam. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2023;35(5):271-286. (In Russ.) https://doi.org/10.15514/ISPRAS-2022-35(5)-18