On Modeling the Grain Settling through Viscous Incompressible Fluid Problem using Smoothed Particle Hydrodynamics Method
https://doi.org/10.15514/ISPRAS-2024-36(4)-15
Abstract
In this paper was formulates the settling velocity determining problem for a single particle. To solve it, an original version of the smoothed particle method (SPH) is proposed where settling particle affects on surrounding fluid particles movement. Herewith the calculation of forces acting on particle (except for inertial forces which takes attached mass effect) is performed according by analytical mechanics formulas for a material point. This mathematical formulation and calculation algorithm was verificated by using open source code «SPH_Lab2d». Dependences for the particle settling velocity on its diameter are obtained for various cases of fluid volume discretization. The results demonstrate a good conformance this property to values, that determined by the experimental data and known phenomenological dependences for quartz sand.
About the Authors
Igor Ivanovich POTAPOVRussian Federation
Dr. Sci. (Phys.-Math.), chief researcher of the Computer center of Far East Branch of the Russian Academy of Sciences. The research interests: channel processes for flat rivers with an incoherent bed, river hydrodynamics, bed instability of the river channel, and mathematical modeling of the incoherent bed evolution under the influence of a river flow.
Olga Vladimirovna RESHETNIKOVA
Russian Federation
Cand. Sci. (Tech.), researcher of the Computer center of Far East Branch of the Russian Academy of Sciences. The research interests: analysis and mathematical modeling of mechanical processes in continuous media.
References
1. Петров А.Г., Потапов И.И. Избранные разделы русловой динамики. – М.: ЛЕНАНД, 2019. – 244 с. / Petrov A.G., Potapov I.I. Selected sections of riverbed dynamics. – Moscow: LENAND, 2019. – 244 P.
2. Караушев А.В. Теория и методы расчета речных наносов. – Л.: Гидрометеоиздат, 1977. – 270 с. / Karaushev A. V. Theory and methods of river sediments calculation. Leningrad : Gidrometeoizdat, 1977. 1977. – 270 P.
3. Потапов И.И., Решетникова О.В. Применение стационарной гипопластической модели для моделирования движения сыпучей среды // Вычислительные технологии. – 2019. – Т.24, № 6. – С. 90-98. / Potapov I. I., Reshetnikova O. V. The use of a stationary hypoplastic model for modeling the motion of a granular medium // Computing technologies. – 2019. – Vol.24, no 6. – P. 90-98.
4. Coleman S.E., Nikora V.I. Initiation and growth of fluvial dunes // Marine and River Dune Dynamics, 1 – 3 April 2008, Leeds, United Kingdom. – P. 43 – 49.
5. Sanne L.N. Modeling of sand dunes in steady and tidal flow. Ph.D.-thesis MEK-DTU, Technical University of Copenhagen, Denmark. 2003.– 185 P.
6. Tjerry S. Morphological calculations of dunes in alluvial rivers. Ph.D.-thesis ISVA, Technical University of Denmark. 1995. – 193 P.
7. Boac, J.M., Ambrose, R.P.K., Casada, M.E. et al. Applications of Discrete Element Method in Modeling of Grain Postharvest Operations // Food Eng Rev. 2014 – Vol. 6. – P. 128-149.
8. Szewc K., Pozorski J., Minier J.-P. Simulations of single bubbles rising through viscous liquids using Smoothed Particle Hydrodynamics // International Journal of Multiphase Flow. – 2013. – Vol. 50. P. 98-105.
9. Vahabi M., Sadengy K. On the use of SPH method for simulating gas bubbles rising in viscoelastic liquids // Nihon Reoroji Gakkaishi. 2014. – Vol. 42, №. 5. – P. 309-319.
10. Monaghan J.J. Shock Simulation by the Particle Method SPH // Journal of computational physics. – 1983. – Vol. 52. – P. 374-389.
11. Monaghan J.J. Smoothed particle hydrodynamics and its diverse applications // Annu. Rev. Fluid Mech. – 2012. – Vol. 44. – P. 323-346.
12. Molteni D., Colagrossi A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH // Computer Physics Communications. – 2009. Vol. – 180, №. 6. – P. 861-872.
13. Morris J.P., Fox P.J., Zhu Y. Modeling low Reynolds number incompressible flows using SPH // Comput. Phys. – 1997. – Vol. 136. – P. 214-226.
14. Monaghan J.J. Smoothed particles hydrodynamics // Reports on Progress in Physics. – 2005. – Vol. 68. – P. 1703-1759.
15. Потапов И. И., Решетникова О. В. Исследование влияния двух геометрических параметров на точность решения гидростатической задачи методом гидродинамики сглаженных частиц // Компьютерные исследования и моделирование. – 2021. – Т. 13, № 5. – С. 979-992. / Potapov I. I., Reshetnikova O. V. The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method // Computer research and modeling. – 2021. – Vol. 13, no 5. – P. 979-992.
16. Потапов И.И., Решетникова О.В. Реализация модели движения сыпучей среды методом сглаженных частиц // Информатика и системы управления. – 2019. – Т. 62, № 4. – С. 26-34. / Potapov I. I., Reshetnikova O. V. About the SPH- implementation of the bulk medium motion model // Information Science and Control Systems. – 2019. – Vol. 62, no 4. – P. 26–34.
17. Rubey W. W. Setting velocities of gravel, sand and silt particles // American journal of science. 1933. Vol. 25. P. 325-338.
18. Справочник по гидравлике / Под ред. В.А. Большакова. – 2-е изд., перераб. и доп. – К.: Вища шк. Головное изд-во, 1984. – 343 с. / Handbook of Hydraulics / Et al. V.A. Bolshakov. – 2nd et. – Kiev: Higher education. Main publishing, 1984. – 343 P.
19.
Review
For citations:
POTAPOV I.I., RESHETNIKOVA O.V. On Modeling the Grain Settling through Viscous Incompressible Fluid Problem using Smoothed Particle Hydrodynamics Method. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(4):191-202. (In Russ.) https://doi.org/10.15514/ISPRAS-2024-36(4)-15