Software Architecture for the Development of a Collaborative Medical Activities System in the Rehabilitation of Strokes
https://doi.org/10.15514/ISPRAS-2024-36(1)-15
Abstract
A person who has had a stroke needs rehabilitation to recover from the effects of the incident. A multidisciplinary team of experts performs rehabilitation, offering treatment from many fields, including neurology, nutrition, psychology, and physiotherapy. In the rehabilitation process, physicians interact with medical computing software and devices. The interactions represent medical activities that follow rehabilitation. Nevertheless, how specialists collaborate to do medical tasks is poorly understood using technologies since no particular means of communication enable interdisciplinary cooperation for integral rehabilitation of strokes. Therefore, we present a collaborative software architecture to assist and enable the monitoring of medical activities through multimodal human-computer interactions. The architecture has three layers: the first is to perceive interactions and monitor activities, the second is to manage information sharing and interdisciplinary access, and the third is to assess how well multidisciplinary activities were carried out. The physicians are assisted in their decision-making on the execution of the treatment plan by evaluating how the activities are carried out, which are recollected through the architecture proposed. As a result, we provide a prototype with a user-centered design that understands how the architecture supports human-computer interactions.
Keywords
About the Authors
Sofía Isabel FERNÁNDEZ GREGORIOMexico
Has her Master Degree in Applied Computing from the National Laboratory of Advanced Computing (LANIA) in Veracruz, Mexico. She is a doctoral student in computer science from the Universidad Veracruzana in Mexico. Her areas of interest are Software Engineering, mHealth Applications, Computer-Supported Cooperative Work (CSCW), and Human-Computer Interaction.
Luis Gerardo MONTANÉ-JIMÉNEZ
Mexico
PhD in Computer Science graduated from the Universidad Veracruzana in Mexico, with a master's degree in Applied Computing from the National Laboratory of Advanced Computing (LANIA). He is currently Full-time Professor and Researcher at the Faculty of Statistics and Computer Science of the University Veracruzana (México). His areas of interest are Computer-Supported Cooperative Work (CSCW), Data Visualization, Human-Computer Interaction, Context-Aware Computing and Videogame Development.
Carmen MEZURA GODOY
Mexico
Ph.D. in Computer Science from the University of Savoie in France. Professor at the Faculty of Statistics and Informatics of the University of Veracruz in Mexico. Main research interests: Human Computer Interaction, User eXperience (UX), Computer Supported Collaborative Work (CSCW), Visualization and Multiagent Systems.
Viviana Yarel ROSALES-MORALES
Mexico
MSc in Computer Systems and PhD in Engineering Sciences from the Technological Institute of Orizaba, Veracruz, Mexico. She has involved in some Mexican research projects and joined the Faculty of Statistics and Informatics of the Universidad Veracruzana in Mexico, through the Cátedras CONACYT program in 2019. Her research interests include: Human-Computer Interaction, User Experience, Serious Games and eHealth Applications, to name a few.
References
1. Interaccion. Revista digital de AIPO. Asociación Intercción Persona-Ordenador. [En línea]. Disponible en https://revista.aipo.es/index.php/INTERACCION/CFP-multimodal-HCI [Accedido: 25-abr-202
2. Lukin V. N., Dzyubenko A. L., Chechikov Y. B. (2020). Approaches to user interface development. Programming and Computer Software, 46, 316-323.
3. Alessandro L., Olmos L. E., Bonamico L., Muzio D. M., Ahumada M. H., Russo M. J., Allegri R. F., Gianella M. G., Campora H., Delorme R., Vescovo M. E., Lado V., Mastroberti L. R., Butus A., Galluzzi H. D., Décima G., Ameriso S. F. (n.d.). Rehabilitación multidisciplinaria para pacientes adultos con accidente cerebrovascular. MEDICINA (Buenos Aires) 2020, 80: 54-68.
4. Gregorio S. I. F., Montané-Jiménez L. G. (2022, October). Towards the improvement of computer-assisted medical activities for stroke rehabilitation. In 2022 10th International Conference in Software Engineering Research and Innovation (CONISOFT) (pp. 102-111). IEEE.
5. Hayyolalam V., Kazem A. A. P. (2018). A systematic literature review on QoS-aware service composition and selection in cloud environment. Journal of Network and Computer Applications, 110, 52-74.
6. Obana M., Furuya J., Matsubara C., Tohara H., Inaji M., Miki K., Numasawa Y., Minakuchi S., Maehara T. (2019). Effect of a collaborative transdisciplinary team approach on oral health status in acute stroke patients. “Journal of Oral Rehabilitation”, 46 (12), 1170–1176. https://doi.org/10.1111/joor.12855.
7. Pristipino C., Anzola G. P., Ballerini L., Bartorelli A., Cecconi M., Chessa M., Donti A., Gaspardone A., Neri G., Onorato E., Palareti G., Rakar S., Rigatelli G., Santoro G., Toni D., Ussia G. P., Violini R. (2013). Management of patients with patent foramen ovale and cryptogenic stroke: A collaborative, multidisciplinary, position paper. “Catheterization and Cardiovascular Interventions”, 82 (1). https://doi.org/10.1002/ccd.24637.
8. Watson T., Tiu J., Clissold B. (2020). Addressing inequity in acute stroke care requires attention to each component of regional workflow. “Medical Journal of Australia”, 212 (1), 8-10. https://doi.org/10.5694/mja2.50440.
9. Tiu J., Watson T., Clissold B. (2021). Mechanical thrombectomy for emergent large vessel occlusion: an Australian primary stroke centre workflow analysis. “Internal Medicine Journal”, 51 (6), 905–909. https://doi.org/10.1111/imj.14843. https://doi.org/10.1016/j.future.2017.09.061 (in press)
10. Alonso de Leciñana M., Fuentes B., Ximénez-Carrillo A., Vivancos J., Masjuan J., Gil-Nuñez A., Martínez-Sánchez P., Zapata-Wainberg G., Cruz-Culebras A., García-Pastor A., Díaz-Otero F., Fandiño E., Frutos R., Caniego J. L., Méndez J. C., Fernández-Prieto A., Bárcena-Ruiz E., Díez-Tejedor E. (2016). A collaborative system for endovascular treatment of acute ischaemic stroke: The Madrid Stroke Network experience. “European Journal of Neurology”, 23 (2), 297–303. https://doi.org/10.1111/ene.12749.
11. Macisaac R. L., Khatri P., Bendszus M., Bracard S., Broderick J., Campbell B., Ciccone A., Dávalos A., Davis S. M., Demchuk A., Diener H. C., Dippel D., Donnan G. A., Fiehler J., Fiorella D., Goyal M., Hacke W., Hill M. D., Jahan R., … Lees K. R. (2015). A collaborative sequential meta-analysis of individual patient data from randomized trials of endovascular therapy and tPA vs. tPA alone for acute ischemic stroke: ThRombEctomy And tPA (TREAT) analysis: Statistical analysis plan for a sequential meta-anal. “International Journal of Stroke”, 10 (A100), 136–144. https://doi.org/10.1111/ijs.12622.
12. Chowdhury S. Z., Baskar P. S., Bhaskar S. (2021). Effect of prehospital workflow optimization on treatment delays and clinical outcomes in acute ischemic stroke: A systematic review and meta-analysis. “Academic Emergency Medicine”, 28 (7), 781–801. https://doi.org/10.1111/acem.14204.
13. Santana Baskar P., Cordato D., Wardman D., Bhaskar S. (2021). In-hospital acute stroke workflow in acute stroke – Systems-based approaches. “Acta Neurologica Scandinavica”, 143 (2), 111–120. https://doi.org/10.1111/ane.13343
14. Rogers H., Madathil K. C., Joseph A., Holmstedt C., Qanungo S., McNeese N., Morris T., Holden R. J., McElligott J. T. (2021). An exploratory study investigating the barriers, facilitators, and demands affecting caregivers in a telemedicine integrated ambulance-based setting for stroke care. “Applied Ergonomics”, 97. https://doi.org/10.1016/J.APERGO.2021.103537
15. Daemen E. M. L., Flinsenberg I. C. M., van Loenen E. J., Cuppen R. P. G., Rajae-Joordens R. J. E. (2013). Adaptive Daily Rhythm Atmospheres for stroke patients: A staff evaluation. Proceedings of the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, PervasiveHealth 2013, 121–128. https://doi.org/10.4108/icst.pervasivehealth.2013.252090
16. Grigoriev O. G., Kobrinskii B. A., Osipov G. S., Molodchenkov A. I., Smirnov I. V. (2018). Health Management System Knowledge Base for Formation and Support of a Preventive Measures Plan. “Procedia Computer Science”, 145, 238–241. https://doi.org/10.1016/J.PROCS.2018.11.050/
17. Esensoy, A. V., Carter, M. W. (2018). High-fidelity whole-system patient flow modeling to assess health care transformation policies. “European Journal of Operational Research”, 266(1), 221–237. https://doi.org/10.1016/J.EJOR.2017.09.019.
18. Ferrante S., Bonacina S., Pinciroli F. (2013). Modeling stroke rehabilitation processes using the Unified Modeling Language (UML). “Computers in Biology and Medicine”, 43 (10), 1390–1401. https://doi.org/10.1016/J.COMPBIOMED.2013.07.012.
19. Yang Y., Xu H., Qi B., Niu X., Li M., Zhao D. (2020). Stroke screening data modeling based on openEHR and NINDS Stroke CDE. “Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020”, 2147–2152. https://doi.org/10.1109/BIBM49941.2020.9313127.
20. Wantaka C., Kitidumrongsuk P., Soontornpipit P., Sillabutra J. (2018). Design and Development of Data Model for Stroke FAST Track System. “IEECON 2018 - 6th International Electrical Engineering Congress”. https://doi.org/10.1109/IEECON.2018.8712241.
21. Chang T. M., Kao H. Y., Wu J. H., Su Y. F. (2016). Improving physicians’ performance with a stroke CDSS: A cognitive fit design approach. “Computers in Human Behavior”, 54, 577–586. https://doi.org/10.1016/J.CHB.2015.07.054.
22. Gibson O. J., Balami J. S., Pope G. A., Tarassenko L., Reckless I. P. (2012). “Stroke Nav”: A wireless data collection and review system to support stroke care delivery. “Computer Methods and Programs in Biomedicine”, 108(1), 338–345. https://doi.org/10.1016/J.CMPB.2012.02.001.
23. Tang Z., Lawson S., Messing D., Guo J., Smith T., Feng J. (2016). Collaborative Rehabilitation Support System: A Comprehensive Solution for Everyday Rehab. “Proceedings - 2015 IEEE International Symposium on Multimedia, ISM 2015”, 61–64. https://doi.org/10.1109/ISM.2015.62.
24. Sun M., Dai D., Wu X., Wang S., Zang T., Xu X. (2016). SS4CSHC: A Services System for the Collaboration in Stroke Healthcare Cycle. “Proceedings of International Conference on Service Science, ICSS</i>, 2016-Febru”, 174–180. https://doi.org/10.1109/ICSS.2015.29.
25. Li S., Manogaran G. (2019). Design and Implementation of Networked Collaborative Service System for Brain Stroke Prevention and First Aid. “IEEE Access”, 7, 14825–14836. https://doi.org/10.1109/ACCESS.2019.2892947.
26. Ilieva R. Y., Damyanov V. (2019). NextGen HighTech Solutions to Improve the QoL in Cerebral Stroke Consequences. “10th National Conference with International Participation, ELECTRONICA 2019 – Proceedings”, Ml, 2019–2022. https://doi.org/10.1109/ELECTRONICA.2019.8825640.
27. Park E., Kim J. H., Nam H. S., Chang H. J. (2018). Requirement Analysis and Implementation of Smart Emergency Medical Services. “IEEE Access”, 6, 42022–42029. https://doi.org/10.1109/ACCESS.2018.2861711.
28. Wang Y. (2012). When music, information technology, and medicine meet. MIRUM 2012 - Proceedings of the 2nd International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies, Co-Located with ACM Multimedia 2012, 43–44. https://doi.org/10.1145/2390848.2390859.
29. Ramesh V., Kim S., Nguyen H. A., Agrawal K., Meyer B. C., Weibel N. (2020). Developing aids to assist acute stroke diagnosis. “Conference on Human Factors in Computing Systems – Proceedings” https://doi.org/10.1145/3334480.3383039.
30. Tsoupikova D., Triandafilou K., Solanki S., Barry A., Preuss F., Kamper D. (2016). Real-time diagnostic data in multi-user virtual reality post-stroke therapy. “SA 2016 - SIGGRAPH ASIA 2016 VR Showcase”, 1–2. https://doi.org/10.1145/2996376.2996387.
31. Virbitskaite I. B., Dubtsov R. S. (2008). Semantic domains of timed event structures. Programming and Computer Software, 34, 125-137.
32. Zhuklinets I. A., Khotimsky D. A. (2002). Logical time in distributed software systems. Programming and Computer Software, 28, 174-18.
Review
For citations:
FERNÁNDEZ GREGORIO S.I., MONTANÉ-JIMÉNEZ L.G., MEZURA GODOY C., ROSALES-MORALES V.Ya. Software Architecture for the Development of a Collaborative Medical Activities System in the Rehabilitation of Strokes. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(1):239-250. https://doi.org/10.15514/ISPRAS-2024-36(1)-15