Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Data-Driven Approach to Curriculum Analysis

https://doi.org/10.15514/ISPRAS-2024-36(2)-7

Abstract

The choice of an educational program is momentous in young people's lives. Given the shortage of time after exams, applicants usually do not have time to analyze possible educational tracks. Furthermore, it requires a thorough study of learning plans. This research addresses the problem proposing the algorithm to data-driven curriculum analysis based on natural language processing of course names or competences listed in learning plans. Moreover, the intelligent software system architecture is described. The method is tested on the curricula scraped from university websites. In order to store the content a data warehouse has been developed. At this time, there are few studies on this topic. The existing ones are either on the early stages of development or scarce on implementation details. They are briefly discussed in this paper.

About the Authors

Iuri NASU
HSE University
Russian Federation

Alumnus of National Research University – Higher School of Economics (HSE University, Perm), educational program “Software Engineering”. Research interests: applied and computational linear algebra, natural language processing, systems analysis.



Mikhail Sergeevich DROBININ
HSE University
Russian Federation

Alumnus of National Research University – Higher School of Economics (HSE University, Perm), educational program “Software Engineering”. Research interests: software design and architecture, object-oriented-programming.



Mark Stanislavovich EFANOV
HSE University
Russian Federation

Alumnus of National Research University – Higher School of Economics (HSE University, Perm), educational program “Software Engineering”. Research interests: business intelligence, systems analysis.



Viacheslav Vladimirovich LANIN
HSE University
Russian Federation

Senior Lecturer of the Department of Information Technologies in Business of the National Research University – Higher School of Economics (HSE University, Perm Branch). Research interests: modeling languages, domain specific modeling, language toolkits, CASE tools, simulation systems.



References

1. Kırdök O., Harman E. High School Students' Career Decision-making Difficulties According to Locus of Control. Universal Journal of Educational Research, vol 6, No. 2, pp. 242-248, 2018. doi:10.13189/ujer.2018.060205.

2. Kılıç S., Günal Y. University Students’ Career Decision Regret: A Mixed-Method Research. IJERE, 2023, vol. 8, No. 3, pp. 521-531. doi:10.24331/ijere.1257601.

3. Prakhov I., Rozhkova K., Travkin P. Osnovnye strategii vybora vuza i bar'ery, ogranichivayushchie dostup k vysshemu obrazovaniyu [Main strategies for choosing a higher education institution and barriers limiting access to higher education]. HSE University, Moscow, Rep. 17. Available at: https://www.hse.ru/data/2022/01/25/ 1755651210/ib_17_2021.pdf, accessed 01 Apr. 2024 (In Russian).

4. Kelchevskaya N., Shirinkina E. Integraciya obrazovatel'nyh i professional'nyh standartov v usloviyah reformirovaniya: problemy i puti [Integration of educational and professional standards under conditions of reform: problems and ways of solution]. Universitetskoe upravlenie: praktika i analiz [University Governance: Practice and Analysis], issue 1, 2018. pp. 16-25. DOI 10.15826 (In Russian).

5. Nasu Iu., Lanin V. Development of Legal Document Classification System Based on Support Vector Machine. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp. 49-56. DOI: 10.15514/ISPRAS2023-35(2)-4.

6. Mikolov T., Chen K., Corrado G., Dean J. Efficient Estimation of Word Representations in Vector Space. 2013. Available at: arXiv:1301.3781, accessed 01 Apr. 2024.

7. Devlin J.; Chang M.-W., Lee K., Toutanova K. BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. 2018. Available at: https://doi.org/ 10.48550/arXiv.1810.04805, accessed 01 Apr. 2024.

8. Shen Y., Liu J. Comparison of Text Sentiment Analysis based on Bert and Word2vec. In Conf. IEEE 3rd ICFTIC, 2021, pp. 144-147. Available at: https://ieeexplore. ieee.org/document/9647258, accessed 01 Apr. 2024.

9. Zykova T., Kytmanov A., Khalturin E. Ob analize uchebnogo plana podgotovki bakalavrov v oblasti informacionnyh tekhnologij [On the analysis of the curriculum for training bachelors in information technology]. In Conf. New Educational Strategies in the Modern Information Space, St. Petersburg, 2022, pp. 338- 343. Available at: https://www.elibrary.ru/download/ elibrary_49318813_30209023.pdf, accessed 01 Apr. 2024 (In Russian).

10. Zykova T., Kytmanov A., Khalturin E. Analiz formirovaniya kompetencij uchebnogo plana obrazovatel'noj programmy [Analysis of the formation of competences of the educational program curriculum]. In Conf. Transformation of Mechanics and Mathematics and IT-Education in Terms of Digitalization, Minsk, 2023, vol. 1, pp. 176-181. Available at: https://www.elibrary.ru/ download/elibrary_54184628_52556588.pdf, accessed 01 Apr. 2024 (In Russian).

11. Zykova T., Kytmanov A., Khalturin E., Noskov M. O sravnenii grafovyh modelej uchebnyh planov podgotovki inzhenerov v oblasti informacionnyh tekhnologij [On the Comparison of Graph Models of Curricula for Training Engineers in the Field of Information Technology]. In Conf. Informatization of Education and E-learning Methods: Digital Technologies in Education, Krasnoyarsk, 2023, pp. 1105-1109. Available at: https://www.elibrary.ru/ download/elibrary_54778536_72713754.pdf, accessed 01 Apr. 2024. (In Russian).

12. Mitsel A., Cherniaeva N. Methods for control over learning individual trajectory. IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 91, № 012069. doi:10.1088/1757- 899X/91/1/012069.

13. Federal Assembly of Russia. (2012). No. 273-FZ, Federal Act on Education. Available at: https://www.consultant.ru/ document/cons_doc_LAW_140174/, accessed 01 Apr. 2024. (In Russian).

14. FGOS. Federal Education Standards (Russia). Available at: https://fgos.ru/, accessed 01 Apr. 2024. (In Russian).

15. Fielding R. Architectural Styles and the Design of Network-based Software Architectures, Ph.D. dissertation. University of California, Irvine. 2000. Available at: https://ics.uci.edu/~fielding/pubs/dissertation/top.htm, accessed 02 Apr. 2024.

16. Docker (2023). Docker: Accelerated Container Application Development. Available at: https://www.docker.com/, accessed 01 Feb. 2024.

17. Nginx (2023). Nginx. Available at: https://www. nginx.com/, accessed 01 Feb. 2024.

18. SBERT. (2023). SentenceTransformers Documentation. Available at: https://www.sbert.net/, accessed 01 Apr. 2024.

19. Selenium. (2023). Selenium Webdriver. Available at: https://www.selenium.dev/documentation/webdriver/, accessed 01 Apr. 2024.

20. Ruotsalo T., Peltonen J., Eugster M., Głowacka D., Floréen P., Myllymäki P., Jacucci G., Kaski S. Interactive Intent Modeling for Exploratory Search. ACM Transaction on Information Systems, vol. 36, issue 4, article 44, 2018. 46 pages. DOI:10.1145/3231593.


Review

For citations:


NASU I., DROBININ M.S., EFANOV M.S., LANIN V.V. Data-Driven Approach to Curriculum Analysis. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(2):83-90. https://doi.org/10.15514/ISPRAS-2024-36(2)-7



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)