Investigation of Electro-Vortex Flow between Planes using Different Computational Approaches
https://doi.org/10.15514/ISPRAS-2024-36(2)-12
Abstract
Electrovortex flows arise when an electric current of varying density passes through a well-conducting fluid (e.g., acid or metal melt). In such a case, the electric current generates a magnetic field, which leads to the Lorentz force causing swirling currents of the medium. There are different methods of theoretical study of such currents. As a rule, to avoid the necessity to find the pressure dependence on coordinates, the variables "vector potential of velocity - swirl" ("scalar current function – swirl" in the case of axisymmetric flows) are used. In such a case, it is quite effective to use automodel variables, which allow to reduce the dimensionality of the problem. In this case, the solution for the introduced function can be sought in the form of an expansion by the electro-vortex flow parameter proportional to the square of the magnetic Reynolds number. Also, this solution can be obtained numerically, for example, using finite-difference methods. Nowadays, more and more often the solutions are investigated by means of direct numerical modeling methods, when no automodel approximations are made, which reduce the accuracy of the solution. Nevertheless, in such a case the number of computations can be quite large and requires the use of supercomputer resources. A separate difficulty is presented by the boundary conditions: for example, for the velocity vector potential we obtain a fourth-order equation, which imposes significant restrictions on the time steps in the evolution equation. The problem can be avoided by using approximate boundary conditions, but this again reduces the accuracy of the solution. In this paper, using the example of electro-vortex flow between planes, the solutions that can be obtained using the various computational approaches mentioned above are examined. The results obtained are compared, and they are also compared with analytical approximations.
Keywords
About the Authors
Evgeny Alexandrovich MIKHAILOVRussian Federation
Dr. Sci. (Phys.-Math.), Senior Researcher of Lebedev Physical Institute since 2021, Associate Professor of Lomonosov Moscow State University since 2022. Research interests: magnetohydrodynamics, cosmic magnetic fields, electrovortex flows, mathematical modelling in physics.
Anton Alexandrovich TARANYUK
Russian Federation
Student of Lomonosov Moscow State University, laboratory assistant researcher at IEPT RAS. Research interests: magnetohydrodynamics, electrovortex flows, mathematical modelling in physics.
Anastasia Pavlovna STEPANOVA
Russian Federation
Student of Lomonosov Moscow State University. Research interests: magnetohydrodynamics, electrovortex flows, mathematical modelling in physics.
References
1. Гельфгат Ю.М., Лиелаусис О.А., Щербинин Э.В. Жидкий металл под действием электромагнитных сил. – Рига: Зинатне, 1975
2. Pavlovs S., Jakovics A., Baake E., Nacke B. Melt flow patterns in metallurgical MHD devices with combined inductive and conductive power supply, Magnetohydrodynamics, 50 (2014), 303–315
3. Бояревич В.В., Фрейберг Я.Ж., Шилова Е.И., Щербинин Э.В. Электровихревые течения. \\ Рига: Зинатне, 1985.
4. Мандрыкин, С.Д., Колесниченко, И.В., Лосев, Г.Л., Фрик, П.Г. Электровихревое течение жидкого металла в цилиндрическом канале / С.Д. Мандрыкин, И.В. Колесниченко, Г.Л. Лосев, П.Г. Фрик. // Вестник Пермского университета. Физика. – Вып.2 (40). – С.20 – 26.
5. Ивочкин, Ю.П., Тепляков, И.О., Гусева, А.А., Токарев, Ю.Н. Численное и экспериментальное исследование структуры закрученного электровихревого течения / Ю.П. Ивочкин, И.О. Тепляков, А.А. Гусева, Ю.Н. Токарев // Тепловые процессы в технике, 2012. – 8. – С.345 – 352.
6. Sozou, C., Pickering, W.M. Magnetohydrodynamic flow in a container due to the discharge of an electric current in a hemispherical container / C.Sozou, W.M.Pickering // Journal of Fluid Mechanics, 1976. – V.73. – P.641 – 650
7. Kharicha, A., Karimi-Sibaki, E., Wu, M., Ludwig, A. Bohacek Review on Modeling and Simulation of Electroslag Remelting / A.Kharicha, E.Karimi-Sibaki, M.Wu, A.Ludwig, J.: Steel Res. Int., 2018. – V.89 - 1700100.
8. Liu, K. Numerical and experimental investigation of electro-vortex flow in a cylindrical container / K. Liu, F. Stefani, N. Weber, T. Weier, B.W. Li // Magnetohydrodynamics. 2020. Vol. 56. No. 1.
9. Weinan, E., Liu, J.G. Vorticity Boundary Condition and Related Issues for Finite Difference Schemes / E. Weinan, J.G. Liu // Journal of Computational Physics, 1996. – V.124.
10. Kaudze M., Chudnovsky A. Axisymmetric electrovortex flow between two planes induced by AC, Magnetohydrodynamics, 25 (1989), 187–194 Zentralblatt MATH.
11. Bojarevich V., Saramkin V. MHD flows due to electrical current discharge in an axisymmetric layer of limited depth, Magnetohydrodynamics, 13 (1977), 172–177.
12. Михайлов, Е.А., Чудновский, А.Ю. Асимптотическое разложение решения уравнения для медленного осесимметричного электровихревого течения между двумя плоскостями / Михайлов Е.А., Чудновский А.Ю. // Сибирский журнал индустриальной математики, 2020. – Т.23. – С.88 – 100.
13. Михайлов Е.А., Степанова А.П., Таранюк А.А. Анализ и модель системы электровихревых течений между двумя плоскостями при больших токах \\ Труды НГТУ им. Р.Е. Алексеева, 2022, 1. С.32-42.
14. Смирнов Е.М. Автомодельные решения уравнений Навье-Стокса для закрученного течения несжимаемой жидкости в круглой трубе // Прикладная математика и механика, 1981, 45, с.833 – 839
15. Калиткин Н.Н. Численные методы. М., Наука, 1978.
16. Калиткин Н.Н., Белов А.А. Аналог метода Ричардсона для логарифмически сходящегося счета на установление // Доклады Академии наук, 2013, 452, с.261 – 265.
17. Mikhailov E.A., Teplyakov I.O. Construction asymptotic solution while studying electrovortex flow in hemispherical container usung Stokes approximation // Journal of Physics: Conference Series, 2017, 891, 012060.
18. Vl. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, Vad. Voevodin, S. Zhumatiy: Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. In Journal: Supercomputing Frontiers and Innovations, Vol.6, No.2 (2019). pp.4–11. DOI:10.14529/jsfi190201
19. https://github.com/Azilrib/EVT_Planes.
Review
For citations:
MIKHAILOV E.A., TARANYUK A.A., STEPANOVA A.P. Investigation of Electro-Vortex Flow between Planes using Different Computational Approaches. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(2):169-180. (In Russ.) https://doi.org/10.15514/ISPRAS-2024-36(2)-12