A Platform for Collecting Dermatoscopic Images of Patients’ Neoplasms
https://doi.org/10.15514/ISPRAS-2024-36(3)-18
Abstract
The article deals with the formation of a domestic dataset of dermatoscopic images of skin neoplasms of patients, the requirements for metadata and photographs are formed, the existing data sets most popular in the scientific community for building machine learning models for the classification of dermatoscopic images are described. The architecture of the developed platform for data collection of dermatoscopic images of skin neoplasms of patients from the Russian Federation is described.
Keywords
About the Authors
Alexander Vasilevich KOZACHOKRussian Federation
Dr. Sci. (Tech.), associate professor, head of the laboratory of secure software and data analysis of the Institute for system programming of the RAS. Research interests: information security methods and systems, cybersecurity, machine learning, data analysis.
Andrei Andreevich SPIRIN
Russian Federation
Cand. Sci. (Tech.), research associate of the Ivannikov institute for system programming of the Russian academy of sciences. His research interests include pattern recognition, artificial intelligence systems.
Kirill Vyacheslavovich ELETSKIY
Russian Federation
Specialist in the Laboratory of Secure Software and Data Analysis at the Ivannikov Institute for System Programming of the Russian Academy of Sciences. His research interests include the design of pattern recognition systems, automatic computer diagnostics systems, and solving machine learning problems, residual class systems.
Elena Sergeevna KOZACHOK
Russian Federation
Specialist of the Department of system programming of CMC of Lomonosov Moscow State University. Her research interests include pattern recognition, residual class systems.
References
1. Бахарева Ю.О., Тараканова В.О., Рубаняк М.Ю., Каменских Е.М. Меланома кожи (C43): анализ тенденций заболеваемости и смертности в свете пандемии COVID-19, молекулярная эпидемиология. Вопросы онкологии. 2023;69(4):631-638. doi 10.37469/0507-3758-2023-69-4-631- 638
2. Arnold M, Singh D, Laversanne M et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. doi:10.1001/ja-madermatol.2022.0160.
3. Erdmann F, Lortet-Tieulent J, Schüz J, et al. International trends in the incidence of malignant melanoma 1953-2008--are recent generations at higher or lower risk? Int J Cancer [Internet]. 2013;132(2):385-400 [Accessed Aug 18, 2022]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.27616.
4. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2021;71(3):209–249. doi:10.3322/caac.21660
5. Gutierrez-Gonzalez E, Lopez-Abente G, Aragones N, et al. Trends in mortality from cutaneous malignant melanoma in Spain (1982-2016): sex-specific age-cohort-period ef-fects. J Eur Acad Dermatol Venereol. 2019;33(8):1522–1528. doi:10.1111/jdv.15565.
6. Каприн А.Д., Старинский В.В., Шахзадова А.О. Состояние онкологической помощи населению России в 2021 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022:239 [Kaprin AD, Starinsky VV, SHahzadova AO. The state of oncological care to the population of Russia in 2021. Moscow: P.A. Herzen MNIOI – branch of the Fed-eral State Budgetary Institution «NMIC of Radiology» of the Ministry of Health of the Russian Federation. 2022 (In Russ.)]. Available from: https://oncology-association.ru/wp-content/uploads/2022/05/sostoyanie-onkologiches-koj-pomoshhi-naseleniyu-rossii-v-2021-godu.pdf.
7. Мерабишвили В.М., Мерабишвили Э.Н. Эпидемиология, достоверность учета, гистологическая структура, погодичная летальность и выживаемость больных злокачественной меланомой кожи (С43). Популяционное исследование – Часть 1. Вопросы онкологии. 2020;66(6):630-637 [Merabishvili VM, Merabishvili EN. Epidemiology, index of accuracy, his-tological structure, year-by-year lethality and survival of patients with malignant melanoma (С43). Population study – part I. Voprosy Oncologii. 2020;66(6):630-37 (In Russ.)]. Doi:10.37469/0507-3758-2020-66-6-630-637.
8. Мерабишвили В.М., Мерабишвили Э.Н. Эпидемиология, достоверность учета, гистологическая структура, погодичная летальность и выживаемость больных злокачественной меланомой кожи (С43). Популяционное исследование – Часть 2. Вопросы онкологии. 2020;66(6):638-644 [Merabishvili VM, Merabishvili EN. Epidemiology, index of accuracy, histological structure, year-by-year lethality and survival of patients with malignant melanoma (С43). Population study – part 2. Voprosy Oncologii. 2020;66(6):638-44 (In Russ.)]. Doi:10.37469/0507-3758-2020-66-6-638-644.
9. Conforti C, Lallas A, Argenziano G, et al. Impact of the COVID-19 pandemic on dermatology practice world-wide: Results of a survey promoted by the international dermoscopy society (IDS). Dermatol Pract Concept. 2021;11(1):e2021153. doi:10.5826/dpc.1101a153
10. Veronese F, Branciforti F, Zavattaro E, et al. The role in teledermoscopy of an inexpensive and easy-to-use smartphone device for the classification of three types of skin lesions using convolutional neural networks. Di-agnostics (Basel). 2021;11(3):451. doi:10.3390/diagnos-tics11030451.
11. Chuchu N, Dinnes J, Takwoingi Y, et al. Teledermatology for diagnosing skin cancer in adults. Cochrane Da-tabase Syst Rev. 2018;12:CD013193. doi:https://doi.org/10.1002/14651858.CD013193
12. Kozachok A.V., Spirin A.A., Kozachok E.S. Review of methods for early melanoma computer vision detection //Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). – 2022. – Т. 34. – №. 4. – С. 241-250.
13. Hasan M. K. et al. A survey, review, and future trends of skin lesion segmentation and classification //Computers in Biology and Medicine. – 2023. – Т. 155. – С. 106624.
14. Lyakhov P. A., Lyakhova U. A., Nagornov N. N. System for the recognizing of pigmented skin lesions with fusion and analysis of heterogeneous data based on a multimodal neural network //Cancers. – 2022. – Т. 14. – №. 7. – С. 1819.
Review
For citations:
KOZACHOK A.V., SPIRIN A.A., ELETSKIY K.V., KOZACHOK E.S. A Platform for Collecting Dermatoscopic Images of Patients’ Neoplasms. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(3):259-272. (In Russ.) https://doi.org/10.15514/ISPRAS-2024-36(3)-18