Cellular Automaton Approach for the Urban Planning Influence Estmation on the Social and Economic Indicators while a Disease Spreading
https://doi.org/10.15514/ISPRAS-2024-36(5)-15
Abstract
The aim was to investigate how does a city configuration influence on a lethal disease spread. For this purpose, several configurations for subareas with high and low population density are considered. The spread was simulated via a stochastic cellular automata approach, with the main indicators being determined as average over a set of runnings. Since the automaton was based on a SIRS model, as an economic indicator we used the simultaneous sick number, as a social – cumulative dead number. In addition, we considered Manshift losses as a cost loss parameter. The simulation results yield that for the minimal dead number and economic losses it is preferable to use a regular grid of square-shaped low-density subareas. Despite the model suggested indicates that the city planning is important for the pandemic damage minimization which can be reduced due to smart urban development policy.
About the Author
Stepan Alekseevich ELISTRATOVRussian Federation
Employee of Technical Systems Digital Modeling Laboratory of the Institute for System Programming of the RAS since 2021. Research interests: numerical simulation, forecast models, reduced order methods.
References
1. Wynants L. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal / L. Wynants, B. Van Calster, G.S. Collins, R.D. Riley // BMJ. – 2020. – 369. DOI: 10.1136/bmj.m1328.
2. M. Riaz, M. Hussain Sial, S. Sharif, Q. Mehmood. Epidemiological Forecasting Models Using ARIMA, SARIMA, and Holt–Winter Multiplicative Approach for Pakistan // Journal of Environmental and Public Health, 2023, 8907610, 8 pages, 2023. https://doi.org/10.1155/2023/8907610.
3. A. Bakhta, T. Boiveau, Y. Maday, O. Mula, Epidemiological Forecasting with Model Reduction of Compartmental Models. Application to the COVID-19 Pandemic // Biology (2021), 10, 22. https://doi.org/10.3390/biology10010022.
4. V. Petrakova, O. Krivorotko. Mean field game for modeling of COVID-19 spread // Journal of Mathematical Analysis and Applications, 514(1), 2022, https://doi.org/10.1016/j.jmaa.2022.126271.
5. Doncel, Josu, Nicolas Gast, and Bruno Gaujal. A mean field game analysis of SIR dynamics with vaccination. // Probability in the Engineering and Informational Sciences 36(2): 482–99, 2022. doi: 10.1017/S0269964820000522.
6. Ghilli, D., Ricci, C. & Zanco, G. A mean field game model for COVID-19 with human capital accumulation. Econ Theory 77, 533–560 (2024). https://doi.org/10.1007/s00199-023-01505-0.
7. P. Patlolla, V. Gunupudi, A. Mikler, Armin and R.T. Jacob (2004). Agent-Based Simulation Tools in Computational Epidemiology. 212-223. 10.1007/11553762_21.
8. Perez L, Dragicevic S. An agent-based approach for modeling dynamics of contagious disease spread. Int J Health Geogr. 2009 Aug 5;8:50. doi: 10.1186/1476-072X-8-50.
9. Tracy M, Cerdá M, Keyes KM. Agent-Based Modeling in Public Health: Current Applications and Future Directions. Annu Rev Public Health. 2018 Apr 1;39:77-94. doi: 10.1146/annurev-publhealth-040617-014317.
10. Bissett, K.R., Cadena, J., Khan, M. et al. Agent-Based Computational Epidemiological Modeling. J Indian Inst Sci 101, 303–327 (2021). https://doi.org/10.1007/s41745-021-00260-2.
11. Anwar A, Anwar S, Ayub M, Nawaz F, Hyder S, Khan N, Malik I. Climate Change and Infectious Diseases: Evidence from Highly Vulnerable Countries. Iran J Public Health. 2019 Dec;48(12):2187-2195. PMID: 31993386; PMCID: PMC6974868.
12. Mecenas P, Bastos RTDRM, Vallinoto ACR, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020 Sep 18;15(9):e0238339. doi: 10.1371/journal.pone.0238339.
13. Ganasegeran K, Jamil MFA, Ch'ng ASH, Looi I, Peariasamy KM. Influence of Population Density for COVID-19 Spread in Malaysia: An Ecological Study. Int J Environ Res Public Health. 2021 Sep 18;18(18):9866.
14. Hazarie, S., Soriano-Paños, D., Arenas, A. et al. Interplay between population density and mobility in determining the spread of epidemics in cities. Commun Phys 4, 191 (2021). https://doi.org/10.1038/s42005-021-00679-0.
15. Montoya ID. Topography as a contextual variable in infectious disease transmission. Clin Lab Sci. 2004 Spring;17(2):95-101.
16. Henstell, Samantha (2019). "The Role of Urban Planning in the Spread of Communicable Diseases," Agora Journal of Urban Planning and Design, 26-32.
17. Arifin, S.M.N.; Arifin, R.R.; Pitts, D.D.A.; Rahman, M.S.; Nowreen, S.; Madey, G.R.; Collins, F.H. Landscape Epidemiology Modeling Using an Agent-Based Model and a Geographic Information System. Land 2015, 4, 378-412. https://doi.org/10.3390/land4020378
18. Fuentes M.A. Cellular automata and epidemiological models with spatial dependence / M.A. Fuentes, M.N. Kuperman // Physica A: Statistical Mechanics and its Applications. – 1999. – 267(3). – p. 471-486. – URL: https://www.sciencedirect.com/science/article/pii/S0378437199000278 DOI: 10.1016/S0378-4371(99)00027-8.
19. White S.H. Modeling epidemics using cellular automata / S.H. White, A.M. Del Rey, G.R. Sanchez // Appl Math Comput. – 2006. – 186(1). – p. 193-202. DOI: 10.1016/j.amc.2006.06.126.
20. Krivorotko O. Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm / O. Krivorotko, M. Sosnovskaia, I. Vashchenko, C. Kerr // Infect Dis Model. – 2024. – 7(1). – p. 30-44. DOI: 10.1016/j.idm.2021.11.004.
21. W. Song, Z. Yunlin, X. Zhenggang, Y. Guiyan, H. Tian, Huang and M. Nan. Landscape pattern and economic factors’ effect on prediction accuracy of cellular automata-Markov chain model on county scale // Open Geosciences, vol. 12, no. 1, 2020, pp. 626-636. https://doi.org/10.1515/geo-2020-0162.
22. Yeh, A.G.O., Li, X., Xia, C. (2021). Cellular Automata Modeling for Urban and Regional Planning. In: Shi, W., Goodchild, M.F., Batty, M., Kwan, MP., Zhang, A. (eds) Urban Informatics. The Urban Book Series. Springer, Singapore. https://doi.org/10.1007/978-981-15-8983-6_45.
23. Гребенников Р.В. (2011). Моделирование поведения толпы с использованием локальных скалярных полей (диссертация на соискание степени к.т.н., Воронеж, 2011).
24. М. Е. Степанцов, Математическая модель направленного движения группы людей. Матем. Моделирование, 2004, том 16, номер 3, 43–49
25. И. В. Деревич, А. А. Панова, Стохастическая модель движения группы индивидов в ограниченном пространстве с учетом их социального поведения. Матем.
26. моделирование, 2023, том 35, номер 6, 51–62.
27. Managi S, Chen Z. Social-economic impacts of epidemic diseases. Technol Forecast Soc Change. 2022 Feb;175:121316. doi: 10.1016/j.techfore.2021.121316.
28. Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, Agha M, Agha R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg. 2020 Jun;78:185-193. doi: 10.1016/j.ijsu.2020.04.018.
29. Samui P, Mondal J, Khajanchi S. A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos Solitons Fractals. 2020 Nov;140:110173. doi: 10.1016/j.chaos.2020.110173
30. Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022 Aug 1;5(8):e2228008.
31. Ma T, Ding S, Huang R, Wang H, Wang J, Liu J, Wang J, Li J, Wu C, Fan H, Zhou N. The latent period of coronavirus disease 2019 with SARS-CoV-2 B.1.617.2 Delta variant of concern in the postvaccination era. Immun Inflamm Dis. 2022 Jul;10(7):e664.
32. Park M, Pawliuk C, Nguyen T, Griffitt A, Dix-Cooper L, Fourik N, Dawes M. Determining the communicable period of SARS-CoV-2: A rapid review of the literature, March to September 2020. Euro Surveill. 2021 Apr;26(14):2001506. doi: 10.2807/1560-7917.ES.2021.26.14.2001506.
33. https://www.publichealthontario.ca/-/media/documents/ncov/covid-wwksf/2021/03/wwksf-period-of-communicability-overview.pdf?la=en.
34. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020 Jul;20(7):773. doi: 10.1016/S1473-3099(20)30195-X.
35.
Review
For citations:
ELISTRATOV S.A. Cellular Automaton Approach for the Urban Planning Influence Estmation on the Social and Economic Indicators while a Disease Spreading. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(5):219-226. (In Russ.) https://doi.org/10.15514/ISPRAS-2024-36(5)-15