Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Identification of Thermokarst Objects from Satellite Graphical Data Using a Neural Network

https://doi.org/10.15514/ISPRAS-2024-36(4)-14

Abstract

The paper presents the results of a numerical experiment on the identification of thermokarst objects formed as a result of climatic changes in the regions of the cryolithozone, based on satellite graphical data. An applied computer program has been developed designed to identify satellite graphical data implementing a three-layer neural network. The dependence of the object identification efficiency on various initial parameters of the neural network, such as the learning rate, the number of neurons in the hidden layer and the number of learning epochs, has been studied. The optimal values of the above parameters have been identified, providing the highest efficiency indicators of the neural network. The results obtained were compared with the data of other researchers.

About the Authors

Vasiliy Vasilievich ZHEBSAIN
M. K. Ammosov North-Eastern Federal University
Russian Federation

Cand. Sci. (Phys.-Math,), Head of the Department of Radiophysics and Electronic Systems of the Institute of Physics ad Technology of the North-Eastern Federal University since 2015. Research interests: neural network technologies, information technologies, software development, database technologies, problems and issues of remote sensing of the Earth.



Ayal Fedorovich POSELSKY
M. K. Ammosov North-Eastern Federal University
Russian Federation

Postgraduate student of the Department of Radiophysics and Electronic Systems of the Institute of Physics ad Technology of the North-Eastern Federal University. His research interests include neural network technologies, information technology, software development, data analysis.



References

1. Сальва А.М. Отслеживание участков термокарстовых проявлений по космическим снимкам (на примере трассы магистрального водовода в центральной Якутии)//Арктика и Антарктика. 2020. №2. с. 126-137.

2. Konstantinov P., Zhelezniak M., Basharin N., Misailov I., Andreeva V.//Land (MDPI, Basel, Switzerland, 2020). 2020. №9 (12). p. 1-10.

3. Н.И.Башарин, Л.С. Егорова, Н.Ф. Васильев, Н.А. Федоров, А.Н. Федоров // Вестник Северо-Восточного федерального университета. 2020. №3 (19), c. 36-44.

4. Тарик Рашид. Создаем нейронную сеть. СПб. ООО «Альфа книга». 2017. 272 с.

5. Heaton Jeff. Heaton Research. The Number of Hidden Layers (online). https://www.heatonresearch.com/2017/06/01/hidden-layers.html. 12/06/2024.


Review

For citations:


ZHEBSAIN V.V., POSELSKY A.F. Identification of Thermokarst Objects from Satellite Graphical Data Using a Neural Network. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(4):183-190. (In Russ.) https://doi.org/10.15514/ISPRAS-2024-36(4)-14



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)