Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Estimation of the Vertical Diffusion Coefficient of Gas in Compacted Soils by Means of Mathematical Modeling

https://doi.org/10.15514/ISPRAS-2024-36(5)-13

Abstract

The density properties of subsiding loess soils were studied within the framework of mathematical modeling of their compaction using the method of deep explosions. Soil compaction is carried out to eliminate subsidence properties. Loess soils are characterized by low density and high porosity. The density properties of loess depend on the parameters of the diffusion interaction of gas atoms formed as a result of the explosion and the soil being compacted. Solving inverse applied problems that arise when studying mathematical models of geological systems allows us to systematize knowledge about them. The work considers the inverse problem of estimating the diffusion coefficient. Mathematical modeling of the vertical diffusion coefficient in anisotropic and isotropic geological systems was carried out. The case of complete absorption of gas atoms by the surrounding soil has been studied. A numerical assessment of the coefficient of vertical diffusion in soil before and after compaction has been implemented, over time and with an accuracy sufficient for engineering calculations. Gas diffusion coefficients in soils of various densities were obtained. The constructed mathematical relationships for estimating the coefficient of vertical diffusion make it possible to predict the density properties of soils at the stage of designing the foundations of construction projects.

About the Author

Elena Olegovna TARASENKO
North Caucasian Federal University
Russian Federation

Cand. Sci. (Phys.-Math.), Associate Professor, Associate Professor of the Department of Computational Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named after Professor N.I. Chervyakov of the North Caucasus Federal University from 2021. Research interests: mathematical modeling, computational mathematics, software packages.



References

1. Geological World Atlas of scale: 1:10 000 000 / G. Choubert, A. Faure-Muret (general coordinators). Paris: CGMW, UNESCO. 1979.

2. Международная тектоническая карта мира масштаба 1:15 000 000 / под ред. В. Е. Хаина. Ленинград: Мингео, 1984. / International tectonic map of the world scale 1:15 000 000 / ed. V. E. Khaina. Leningrad: Mingeo, 1984. (in Russian)

3. Трофимов В.Т., Балыкова С.Д., Андреева Т.В. и др. Опорные инженерно-геологические разрезы лессовых пород Северной Евразии. Москва: КДУ, 2008.   608 с. / Trofimov V.T., Balykova S.D., Andreeva T.V. and others, Reference engineering-geological sections of loess rocks of Northern Eurasia. Moscow: KDU, 2008. 608 p. (in Russian)

4. Ананьев В.П. Лессовый покров России. Москва: Юриспруденция, 2004. 112 с. / Ananyev V.P. Loess cover of Russia. Moscow: Jurisprudence, 2004. 112 p. (in Russian)

5. Балаев Л.Г., Царев П.В. Лессовые породы Центрального и Восточного Предкавказья. Москва: Наука, 1964. 248 с. / Balaev L.G., Tsarev P.V. Loess rocks of the Central and Eastern Ciscaucasia. Moscow: Nauka, 1964. 248 p. (in Russian)

6. Ed. Wang Y., Zhang Z. Shaanxi, Loess in China. Peaole’s art. Publ House, 1980. 230 p.

7. Григорьева И.Ю. Микростроение лессовых пород. Москва: МАИК Наука, 2001. 147 с. / Grigorieva I.Yu. Microstructure of loess rocks. Moscow: MAIK Nauka, 2001. 147 p. (in Russian)

8. Пантюшина Е.В. Лёссовые грунты и инженерные методы устранения их просадочных свойств // Ползуновский вестник. 2011. № 1. С.127-130. / Pantyushina E. V. Loess soils and engineering methods for eliminating their subsidence properties. Polzunovsky vestnik, vol. 1, 2011, pp. 127-130. (in Russian)

9. Галай Б.Ф. Уплотнение просадочных грунтов глубинными взрывами. Ставрополь: Сервисшкола, 2015. 240 с. / Galay B.F. Compaction of subsidence soils by deep explosions. Stavropol: Service School, 2015. 240 p (in Russian)

10. Way lanynig, Gui Jiuxi, Lu Yanchou, A preliminary study of the physico-mechanic properties of loesses and paleosols of different age at Weibei Yuan, Shaanxi provine. Loess, environment and global change.   SciencePress, Beijing, 1991, pp. 245-259.

11. Тарасенко Е.О., Гладков А.В. Численное решение обратных задач при математическом моделировании геологических систем // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 1. С.105-112. / Tarasenko E.O., Gladkov A.V. Numerical solution of inverse problems in mathematical modeling of geological systems. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, vol. 333(1), 2022, pp. 105-112. (in Russian) DOI: 10.18799/24131830/2022/1/3208

12. Tarasenko Е.О., Gladkov A.V., Gladkova N.A. Solution for Inverse Boundary Value Problems on the Power of a Concentrated Charge in a Mathematical Model of Subsidence Soils Compaction. Mathematics and its Applications in New Computer Systems. MANCS 2021, vol 424, Lecture Notes in Networks and Systems, Springer, 2022, pp. 537-545. DOI: 10.1007/978-3-030-97020-8_49

13. Тарасенко Е.О. Численная оценка плотности грунта методом конечно-разностных сеток при математическом моделировании уплотнения просадочных грунтов глубинными взрывами / Е.О. Тарасенко // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2023, Т. 334. № 5. – С.103-108. / Tarasenko E.O. Numerical estimation of soil density by the method of finite difference grids in mathematical modeling of compaction of subsible soils by deep explosions. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, vol. 334(5), 2023, pp. 103-108. (in Russian) DOI: 10.18799/24131830/2023/5/4022

14. Петраков А.А., Прокопов А.Ю., Петракова Н.А., Панасюк М.Д. Интерпретация прочностных характеристик грунта для численных исследований // Известия Тульского государственного университета. Науки о Земле, 2021. – №. 1. – С.225 – 236. / Petrakov A.A., Prokopov A.Yu., Petrakova N.A., Panasyuk M.D. Interpretation of soil strength characteristics for numerical studies. News of Tula State University. Geosciences, vol. 1, 2021, pp. 225-236. (in Russian)

15. Tarasenko Е.О., Mathematical modeling of the strength properties of lesses by the method of correlation-regression analysis. International Journal for Computational Civil and Structural Engineering, vol. 20(1), 2024, pp. 171-181. DOI: 10.22337/2587-9618-2024-20-1-171-181

16. Tsukamoto Y., Ishihara K. Analysis on settlement of soil deposits following liquefaction during earthquakes. Soils and Foundation, vol. 50(3), 2010, pp. 399-441.

17. Ishihara K. New challenges in Geotechnique for ground hazards due to intensely strong earthquake shaking. Geotechnical, Geological and Earthquake Engineering, vol. 11, 2009, pp. 91-114.

18. Бахвалов Н.С. Численные методы. Москва: Наука, 1973. 614 с. / Bakhvalov N.S. Numerical methods. Moscow: Nauka, 1973. 614 p. (in Russian)

19. Вержбицкий В. М. Численные методы: (математический анализ и обыкновенные дифференциальные уравнения). Москва: Директ-Медиа, 2013. 400 с. / Verzhbitsky V.M. Numerical methods: (mathematical analysis and ordinary differential equations). Moscow: Direct-Media, 2013. 400 p. (in Russian) ISBN 978-5-4458-3876-0.

20. Галай О.Б. Буденновск: геология и город. Ставрополь: СервисШкола, 2022. 318 с. / Galay O.B. Budennovsk: geology and city. Stavropol: Service School, 2022. 318 p. (in Russian)

21. Козырев С.А., Власова Е.А. Газовая вредность взрывчатых веществ, применяемых в горнодобывающей промышленности. Горная промышленность, № 5, 2021. С.106-111. / Kozyrev S.A., Vlasova E.A. Gas hazards of explosives used in the mining industry. Mining, vol. 5, 2021, pp. 106-111. (in Russian) DOI: 10.30686/1609-9192-2021-5-106-111

22. Свидетельство 2024619185. Программа расчёта коэффициента диффузии атомов газа при уплотнении грунтов взрывом: программа для ЭВМ / Е.О. Тарасенко (RU); правообладатель ФГАОУ ВО «Северо-Кавказский федеральный университет» (RU); № 2024617071; заявл. 05.04.24; опубл. 22.04.2024.


Review

For citations:


TARASENKO E.O. Estimation of the Vertical Diffusion Coefficient of Gas in Compacted Soils by Means of Mathematical Modeling. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(5):181-190. https://doi.org/10.15514/ISPRAS-2024-36(5)-13



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)