Secure and Efficient Data Model for Public Lighting in México with AMI/IoT: Implementing LZ4 Compression, IPFS, and Blockchain
https://doi.org/10.15514/ISPRAS-2024-36(6)-10
Abstract
The advent of digitalization and Internet of things (IoT) technologies brings new challenges to the management of electric metering systems. Integrating institutional energy billing systems with government Ambient Intelligence (AMI) systems is essential for effective management. Blockchain technology is proposed to maintain data integrity through automated energy readings. This study introduces an innovative model designed to enhance public lighting in Mexico by integrating AMI and IoT, and employing LZ4 and IPFS for data compression. This approach aims to optimize the handling of large data volumes, resulting in improved data efficiency, enhanced security, cost reductions, and better energy resource management.
Keywords
About the Authors
René GARCÍA-REYESMexico
Final-year PhD student at the Computer Science Department of the National Center for Research and Technological Development (CENIDET) in Mexico. His research interests include decentralized technologies, cryptography, advanced metering infrastructure (AMI), data science, data mining, Internet of Energy (IoE), cloud computing, and virtualization.
Javier ORTIZ-HERNANDEZ
Mexico
PhD in Automation and Computer Science, full professor at the Computer Science Department of the National Center for Research and Technological Development in Mexico. Research interests: digital transformation, requirements engineering, business process modeling.
Rito MIJAREZ
Mexico
PhD in Electrical and Electronics Engineering, a full-time researcher at the Instituto Nacional de Electricidad y Energías Limpias in Mexico. Research interests: digital signal processing, embedded systems, non-destructive testing, ultrasonics.
José Alberto HERNÁNDEZ-AGUILAR
Mexico
PhD of Engineering and Applied Sciences from the Center for Research in Engineering and Applied Sciences at the Autonomous University of the State of Morelos (UAEM). His research interests include data mining, machine learning, deep learning, optimization algorithms on Graphics Processing Units (GPUs), and applied artificial intelligence. Dr. Hernández Aguilar is a Level 1 member of the National System of Researchers (SNI) and has authored several research and outreach articles, as well as three books.
Yasmín HERNÁNDEZ
Mexico
PhD in Computer Science from Tecnológico de Monterrey and a full-time professor and researcher at the Computer Science Department of the National Center for Research and Technological Development (CENIDET) in Mexico. Her areas of expertise include artificial intelligence, intelligent tutoring systems, educational data mining, affective computing, natural language processing, human-computer interaction, and machine learning.
References
1. Evens, M., Ercoli, P., & Arteconi, A., "Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management", Energies, vol. 16, no. 16, p. 6741, 2023. [Online]. Available: https://doi.org/10.3390/en16186741.
2. CONUEE, "Proyecto piloto de tele gestión en alumbrado público", Dirección de Fomento, Difusión e Innovación, Comisión Nacional para el Uso Eficiente de la Energía, January 2023. [Online]. Available: https://www.gob.mx/conuee/articulos/publica-la-conuee-el-informe-del-proyecto-piloto-de-telegestion?idiom=es.
3. IPFS "For Developers: Navigating IPFS", IPFS.tech. [Online]. Disponible en: https://ipfs.tech/developers/. [Access: 4 may 2024].
4. LZ4 Block Format Description. [Online]. Disponible en: https://lz4.org/ [Access: 4 may 2024]
5. Choobineh, M., Paaso, A., Arabnya, A., Sohrabi, B., & Khodaei, A. (2023). Blockchain technology in energy systems: A state-of-the-art review. IET Blockchain, 3(1), 35–59. https://doi.org/10.1049/blc2.12020.
6. Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., et al.: Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable Sustainable Energy Rev. 100,143–174 (2019).
7. Meeuw, A., Schopfer, S., Wortmann, F.: Experimental bandwidth benchmarking for P2P markets in blockchain managed microgrids. Energy Procedia. 159, 370–375 (2019).
8. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2013). "Smart Grid and Smart Homes: Key Players and Pilot Projects", IEEE Industrial Electronics Magazine, 7(4), 18- 34.
9. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22-32.
10. Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton: Princeton University Press.
11. Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science - Research and Development, 33(1-2), 207-214.
12. Islam, N., Rahman, M. S., Mahmud, I., Sifat, M. N. A., & Cho, Y.-Z. (2022). A Blockchain-Enabled Distributed Advanced Metering Infrastructure Secure Communication (BC-AMI). Appl. Sci., 12(14), 7274. https://doi.org/10.3390/app12147274.
13. Bronski, P., Creyts, J., Gao, S., Hambridge, S., Hartnett, S., Hesse, E., Morris, J., Nanavatty, R., & Pennington, N. (2018). "The Decentralized Autonomous Area Agent (D3A) Market Model: An Implementation Framework for Transactive Energy Based on Blockchain for the 21st Century Grid", Energy Web Foundation. Retrieved from https://energyweb.org/D3A.
14. Pichler, M., Meisel, M., Goranovic, A., Leonhartsberger, K., Vallant, H., Lettner, G., Marksteiner, S., Chasparis, G., & Bieser, H. (2019). "Decentralized Energy Networks Based on Blockchain: Background, Overview and Concept Discussion" in W. Abramowicz & A. Paschke (Eds.), BIS 2018 Workshops (LNBIP 339, pp. 244–257). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-04849- 5_22.
15. Aclara, "TWACS Net Server with TWACS OC Software", Hubbell, 2008. [Online]. Available: https://www.hubbell.com/aclara/en/solutions/twacs. [Accessed: May 16, 2024].
16. G. Reyes, "Enterprise Management Systems for Database Administration Focused on Invoicing Processes", Master's thesis, Facultad de Contaduría Administración e Informática, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Noviembre 2014.
17. Aggarwal, S., Chaudhary, R., Aujla, G.S., Kumar, N., Choo, K.K.R., & Zomaya, A.Y. (2019). Blockchain for smart communities: Applications, challenges and opportunities. J. Netw. Comput. Appl., 144, 13–48.
18. Liu, Z., Luong, N.C., Wang, W., Niyato, D., Wang, P., Liang, Y.-C., & Kim, D.I. (2019). A survey on applications of game theory in blockchain. arXiv, arXiv:1902.10865.
19. Wang, S, Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F.Y. (2019). Blockchain-enabled smart contracts: Architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst., 49, 2266–2277.
20. Graf, M., Küsters, R., & Rausch, D. (2020). Accountability in a permissioned blockchain: Formal analysis of hyperledger fabric. In Proceedings of the 2020 IEEE European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 7–11 September 2020.
21. Zhao, W., Qi, Q., Zhou, J., & Luo, X. (2023). Blockchain-Based Applications for Smart Grids: An Umbrella Review. Energies, 16(6147). https://doi.org/10.3390/en16176147.
22. Méndez, J. I., Medina, A., Ponce, P., Peffer, T., Meier, A., & Molina, A. (2022). Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces. Energies, 15(5553). https://doi.org/10.3390/en15155553.
23. Carr, D., & Thomson, M. (2022). Non-Technical Electricity Losses. Energies, 15(6), 2218. https://doi.org/10.3390/en15062218.
24. Djamali, A., Dossow, P., Hinterstocker, M., Schellinger, B., Sedlmeir, J., Völter, F., & Willburger, L. (2021). Asset logging in the energy sector: A scalable blockchain-based data platform. In Proceedings of the 10th DACH+ Conference on Energy Informatics (pp. 1-14). Virtual Conference.
25. Miao, S., Zhang, X., Asamoah, K.O., Gao, J., Qi, X. (2021). E-Chain: Blockchain-Based Energy Market for Smart Cities. In: Liu, Q., Liu, X., Shen, T., Qiu, X. (eds) The 10th International Conference on Computer Engineering and Networks. CENet 2020. Advances in Intelligent Systems and Computing, vol 1274. Springer, Singapore. https://doi.org/10.1007/978-981-15-8462-6_176.
26. R. B. Chakraborty, M. Pandey, and S. S. Rautaray, "Managing Computation Load on a Blockchain-based Multi-Layered Internet-of-Things Network", in Proc. Comput. Sci., vol. 132, pp. 469-476, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050918312400.
27. Y. Lin and C. Zhang, "A Method for Protecting Private Data in IPFS", in Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanjing, China, 2021, pp. 1-4. DOI: 10.1109/CSCWD49262.2021.9437830.
28. Fernando Rebollar Castelán. "Un Modelo Multicapas Basado en Blockchain que Fortalece la Integridad y Seguridad de Información Pública". Tesis doctoral, Doctorado en Ciencias de la Ingeniería, Universidad Autónoma del Estado de México, México, 2021.
29. CFE Esquema tarifario vigente. [Online]. Disponible en: https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Negocio.aspx [Access: 4 may 2024].
30. Secretaría de Energía. "Avanza el proceso de separación de la CFE y su grupo corporativo". [Online]. Available: https://www.gob.mx/sener/prensa/avanza-el-proceso-de-separacion-de-la-cfe-y-su-grupo-corporativo. [Accessed: July 03, 2016].
31. Rousseau, "La reforma energética (2013-2014) a la luz de la nueva legislación sobre los impactos sociales de los proyectos", Foro int, vol. 60, no. 2, pp. 853-887, 2020. DOI: 10.24201/fi.v60i2.2740. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-013X2020000200853&lng=es&nrm=iso. Accessed on May 05, 2024.
32. Instituto Nacional de Electricidad y Energías Limpias, 'Reforma 113, Palmira, 62490 Morelos, Teléfono: (777) 3623811'. [En línea]. Disponible en: https://www.gob.mx/ineel/en#10052. [Access: 4 may 2024]."
Review
For citations:
GARCÍA-REYES R., ORTIZ-HERNANDEZ J., MIJAREZ R., HERNÁNDEZ-AGUILAR J., HERNÁNDEZ Ya. Secure and Efficient Data Model for Public Lighting in México with AMI/IoT: Implementing LZ4 Compression, IPFS, and Blockchain. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2024;36(6):179-194. https://doi.org/10.15514/ISPRAS-2024-36(6)-10