Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Modeling and Analysis of the Microfluidic Chip

https://doi.org/10.15514/ISPRAS-2025-37(1)-3

Abstract

The work is devoted to the analysis of the hydrodynamic model of the Tesla valve, which allows to regulate the flow of liquid in the design of a microfluidic chip. When modelling fluid motion in complex Tesla valves consisting of several loops, one often resorts to analyzing a single loop and further extrapolating the results to the entire valve. To confirm or refute the validity of this method, valves consisting of one and eight loops are analyzed in the work. The resulting pressure difference and diodicity were studied. Based on the obtained data, it was revealed that the hydrodynamics of the Tesla valve is nonlinear and does not correctly generalize the results obtained for one loop to valves consisting of a larger number of loops.

About the Authors

Anastasia Andreevna VARFOLOMEEVA
National Research University Higher School of Economics
Russian Federation

Enrolled in the bachelor's degree program in Applied Mathematics. Research interests: Computational fluid dynamics and microfluidic devices.



Lev Andreevich PYATKO
National Research University Higher School of Economics
Russian Federation

Enrolled in the bachelor's degree program in Applied Mathematics. Research interests: Computational fluid dynamics and microfluidic devices.



Sofya Romanovna PARSHINA
National Research University Higher School of Economics
Russian Federation

Enrolled in the bachelor's degree program in Applied Mathematics. Research interests: Computational fluid dynamics and microfluidic devices.



References

1. Nguyen, N.-T.; Wereley, S.T. Fundamentals and Applications of Microfluidics. Artech House, 2002.

2. Mufeeda C. Koyilot, Priyadarshini Natarajan, Clayton R. Hunt, Sonish Sivarajkumar,1 Romy Roy, Shreeram Joglekar, Shruti Pandita, Carl W. Tong, Shamsudheen Marakkar, Lakshminarayanan Subramanian, Shalini S. Yadav, Anoop V. Cherian, Tej K. Pandita, Khader Shameer, Kamlesh K. Yadav Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells, vol. 11, 2022. 1828 p.

3. Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science, vol. 328, pp. 1662-1668.

4. Humayun, M.; Chow, C.W.; Young, E.W.K. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip, vol. 18, 2018, pp. 1298-1309.

5. Marsano, A.; Conficconi, C.; Lemme, M.; Occhetta, P.; Gaudiello, E.; Votta, E.; Cerino, G.; Redaelli, A.; Rasponi, M. Beating heart on a chip: A novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip., vol. 16, 2016, pp. 599-610.

6. Essig, M.; Terzi, F.; Burtin, M.; Friedlander, G. Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am. J. Physiol. Renal Physiol, vol. 281, 2001, pp. 751-762.

7. Weinberg, E.; Kaazempur-Mofrad, M.; Borenstein, J. Concept and computational design for a bioartificial nephron-on-a-chip. Int. J. Artif. Organs, vol. 31, 2008, pp. 508-514.

8. Matthias Mehling, Savas¸ Tay Mehling, M. Microfluidic cell culture. Current Opinion in Biotechnology, vol. 25, 2014, pp. 95-102.

9. Tatara, A.M. Role of Tissue Engineering in COVID-19 and Future Viral Outbreaks. Tissue Eng., vol. A(26), 2020, pp. 468-474.

10. Tesla N. Valvular conduit. U.S. Patent No. 1329559, 1920.

11. Mcdonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.; Whitesides, G.M. Fabrication of microfluidic system in poly (dimethylsiloxane). Electrophoresis., vol. 21, 2015, pp. 27-40.

12. Weng, X.; Yan, S.; Zhang, Y.; Liu, J.; Shen, J. Design, simulation and experimental study of a micromixer based on Tesla valve structure. Chem. Ind. Eng. Prog., vol. 40, 2021, pp. 4173-4178.

13. Forster F.K., Bardell R.L., Afromowitz M.A. and Sharma N.R. Design, fabrication and testing of fixed-valve micro-pumps. Proc. ASME Fluids Engineering Division, ASME International Mechanical Engineering Congress and Exposition (San Francisco), vol. 234, 1995, pp. 39-44.

14. Gamboa, A.R.; Morris, C.J.; Forster, F.K. Improvements in fixed valve micropump performance through shape optimization of valves. J. Fluids Eng., vol. 127, 2005, 339 p.

15. Agnes Purwidyantri, Briliant Adhi Prabowo Tesla Valve Microfluidics: The Rise of Forgotten Technology. Chemosensors, vol. 11, 2023, 256 p.

16. Raymond H. W. Lam, Wen J. Li A Digitally Controllable Polymer-Based Microfluidic Mixing Module Array. Micromachines, vol. 3, 2012, pp. 279-294.

17. T-Q. Truong, N-T. Nguyen Simulation and optimization of Tesla Valves. Nanotech, vol. 1, 2003, 1 p.

18. Fred K. Forster, Ronald L. Bardell, Martin A. Afromowitz, Nigel R. Sharma, Alan Blanchard Design, fabrication and testing of fixed-valve micro-pumps. ASME Fluids Engineering Division, vol. 234, 1995, pp. 39-44.

19. Zhi-jiang Jin, Zhi-xin Gao, Min-rui Chen, Jin-yuan Qian Parametric study on Tesla valve with reverse flow for hydrogen decompression. Elsevier International Journal of Hydrogen Energy, vol. 43, 2018, pp. 8888-8896.

20. S. Zhang, S. H. Winoto and H.T. Low Performance Simulations of Tesla Microfluidic Valves. MicroNanoChina, vol. 21107, 2007, pp. 15-19.

21. S. M. Thompson, B. J. Paudel, T. Jamal, D. K. Walters Numerical Investigation of Multistaged Tesla Valves. Journal of Fluids Engineering, vol. 136, 2014, 9 p.

22. Benoit Scheid On the diodicity enhancement of multistage Tesla valves. Physics of Fluids, vol. 35, 2023, 5 p.

23. Faras Al Balushi, Arash Dahi Taleghani A Reversible Miniaturized Tesla Valve. ASME Open J. Engineering, vol. 3, 2024, 10p.

24. Kazem Mohammadzadeh, Amin Kolahdouz, Ebrahim Shirani, Mohammad Behshad Shafii Numerical Investigation on The Effect of The Size and Number of Stages on The Tesla Microvalve Efficiency. Journal of Mechanics, vol. 1, 2013, pp. 1-8.

25. Reed, J. L. and Fla, O., Fluidic Rectifier. U. S. Patent., 1993.

26. Deividas Andriukaitis, Rokas Vargalis, Lukas Šerpytis, Tomas Drevinskas, Olga Kornyšova, Mantas Stankevičius, Kristina Bimbiraitė-Survilienė, Vilma Kaškonienė, Audrius Sigitas Maruškas, Linas Jonušauskas Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts. Micromachines, vol. 13(8), 2022, pp. 1180.


Review

For citations:


VARFOLOMEEVA A.A., PYATKO L.A., PARSHINA S.R. Modeling and Analysis of the Microfluidic Chip. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2025;37(1):55-64. (In Russ.) https://doi.org/10.15514/ISPRAS-2025-37(1)-3



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)