Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

CAD for Remote High-Level Modeling of NoC

https://doi.org/10.15514/ISPRAS-2025-37(1)-8

Abstract

The paper is devoted to the description of the process of developing a new CAD architecture for high‑level modeling of NoC, as well as the remote flow of NoC design. The paper analyzes the main stages of NoC design and demonstrates the high importance of high-level modeling and its impact on the entire design process. Also, the possibility of conducting high-level modeling in a remote format using the client server architecture of the CAD is considered. The process of remote design of NoC using the proposed CAD system and remote testbed with FPGA debug boards is demonstrated.

About the Authors

Aleksandr Aleksandrovich AMERIKANOV
HSE University
Russian Federation

Cand. Sci (Tech.), Associate Professor at the HSE University. Research interests: CAD development, development of logic devices, FPGA, networks-on-chip.



Larisa Genadevna EVTUSHENKO
HSE University
Russian Federation

Assistant lecturer at the HSE University. Research interests: development of logic devices, FPGA.



Vladimir Victorovich ZUNIN
HSE University
Russian Federation

Senior Lecturer at the HSE University. Research interests: CAD development, development of logic devices, FPGA.



Vladimir Maksimovich VINARSKII
HSE University
Russian Federation

Student at the HSE University. Research interests: SoC, FPGA, machine learning.



References

1. Shalf J. The future of computing beyond Moore’s Law // Philos. Trans. R. Soc. A. The Royal Society Publishing, 2020, vol. 378, No 2166, p. 20190061.

2. Shan Z. et al. Object Detection Based On Multi-Process // 2022 IEEE International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2022, pp. 1–5.

3. Paul K., Balakrishnan M., Lavenier D. Hardware acceleration of de Novo genome assembly // Int. J. Embed. Syst. Inderscience Publishers, 2017, vol. 9, No 1.

4. Jia Z. et al. Dissecting the graphcore IPU architecture via microbenchmarking // arXiv Prepr. arXiv1912.03413. 2019.

5. Moore S.K. Cerebras’ New Monster AI Chip Adds 1.4 Trillion Transistors – IEEE Spectrum // Cerebras’ New Monster AI Chip Adds 1.4 Trillion Transistors. 2021. (online). https://spectrum.ieee.org/tech-talk/semiconductors/processors/cerebras-giant-ai-chip-now-has-a-trillions-more-transistors?utm_source=techalert&utm_medium=email&utm_campaign=techalert-04-22-21&utm_content=httpsspectrumieeeorgtechtalksemiconductorsprocessor, accessed 05.11.2024.

6. He Y., Chen X. Survey and Comparison of Pipeline of Some RISC and CISC System Architectures // 2023 8th International Conference on Computer and Communication Systems (ICCCS). IEEE, 2023, pp. 785–790.

7. Waterman A. et al. The RISC-V instruction set manual, volume I: User-level ISA, version 2.0 // EECS Dep. Univ. California, Berkeley, Tech. Rep. UCB/EECS-2014-54, 2014.

8. Bjerregaard T., Mahadevan S. A survey of research and practices of Network-on-chip // ACM Comput. Surv. 2006, vol. 38, No 1, pp. 1–51. DOI: 10.1145/1132952.1132953.

9. Sherwani N.A. Algorithms for VLSI physical design automation. Springer Science & Business Media, 2012.

10. Romanov A., Ivannikov A. SystemC Language Usage as the Alternative to the HDL and High-level Modeling for NoC Simulation // Int. J. Embed. Real-Time Commun. Syst. 2018. DOI: 10.4018/IJERTCS.2018070102.

11. Jain A. et al. Scalable design and synthesis of 3D mesh network on chip // Proceeding of International Conference on Intelligent Communication, Control and Devices: ICICCD 2016. Springer, 2017, pp. 661 – 666.

12. Koohi S. et al. High-level modeling approach for analyzing the effects of traffic models on power and throughput in mesh-based NoCs // 21st international conference on VLSI design (VLSID 2008). IEEE, 2008, pp. 415–420.

13. Czaja S.J., Nair S.N. Human factors engineering and systems design // Handb. Hum. factors Ergon. Wiley Online Library, 2012, pp. 38–56.

14. Romanov A.Y. et al. Development of routing algorithms in networks-on-chip based on two-dimensional optimal circulant topologies // Heliyon. Elsevier Ltd, 2020, vol. 6, No 1, p. e03183. DOI: 10.1016/j.heliyon.2020.e03183.

15. Romanov A.Y., Stepanov M.A. UOCNS-SE: Universal On-Chip Network Simulator Server (online). https://github.com/RomeoMe5/UOCNS-SE.

16. Prilepko P.M., Romanov A., Lezhnev E.V. Modification of a High-Level NoCModel 2.0 for Modeling Networks-on-Chip with Circulant Topologies // Probl. Adv. micro- Nanoelectron. Syst. Dev. 2020. P. 23–30. DOI: 10.31114/2078-7707-2020-4-23-30.

17. Romanov A.Y., Opekunova A.A. NoC simulators comparison. 2020. https://github.com/RomeoMe5/NoC_simulators_comparison, accessed 05.11.2024.

18. Romanov A.Y., Romanova I.I. Use of irregular topologies for the synthesis of networks-on-chip // 2015 IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2015, pp. 445–449. DOI: 10.1109/ELNANO.2015.7146927.

19. Romanov O., Lysenko O. The comparative analysis of the efficiency of regular and pseudo-optimal topologies of networks-on-chip based on Netmaker // 2012 Mediterranean Conference on Embedded Computing (MECO). IEEE, 2012, pp. 13–16.

20. Jantsch A., Tenhunen H. Networks on Chip // Networks on Chip / ed. Jantsch A., Tenhunen H. Boston, MA: Springer US, 2003. 312 p. DOI: 10.1007/b105353.

21. De Micheli G., Benini L. Networks on Chips. First Edition / ed. Benini L. Morgan Kaufmann, 2006. 408 p.

22. Dally W.J., Towles B.P. Principles and Practices of Interconnection Networks. Elsevier, 2003. 581 p.

23. Balasubramonian R. CS6810 Lectures (online). Доступно по ссылке: http: https://www.youtube.com/playlist?list=PL8EC1756A7B1764F6, accessed 05.11.2024.

24. Kakoee M.R., Bertacco V., Benini L. ReliNoC: A reliable network for priority-based on-chip communication // 2011 Design, Automation & Test in Europe. IEEE, 2011, pp. 1–6. DOI: 10.1109/DATE.2011.5763112.

25. Bertozzi D. et al. NoC synthesis flow for customized domain specific multiprocessor systems-on-chip // IEEE Trans. Parallel Distrib. Syst. 2005, vol. 16, No 2, pp. 113–129. DOI: 10.1109/TPDS.2005.22.

26. Gabis A.B., Koudil M. NoC routing protocols – objective-based classification // J. Syst. Archit. Elsevier B.V., 2016, vol. 66–67, pp. 14–32. DOI: 10.1016/j.sysarc.2016.04.011.

27. Lorens A., Petukhov G., Romanova I. FPGA-Based Asynchronous Remote Laboratory for Online Learning // 2022 International Russian Automation Conference (RusAutoCon). IEEE, 2022, pp. 623–627. DOI: 10.1109/RusAutoCon54946.2022.9896325.

28. Измайлова Л.Г., Белоруков А.М., Романов А.Ю. Дистанционный стенд для синхронной работы с оборудованием на основе ПЛИС // Проблемы разработки перспективных микро- и наноэлектронных систем. 2022, vol. 4, pp. 117–121.

29. Romashikhin M.Y., Romanova I.I. Parallel Calculation of π in NoCs Using a Remote Testbed // 2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2024, pp. 996–1000. DOI: 10.1109/ICIEAM60818.2024.10553762.

30. Romanov A., Lerner A., Amerikanov A. Cycle-accurate multi-FPGA platform for accelerated emulation of large on-chip networks // The Journal of Supercomputing. 2024, No 80, pp. 22462–22478. DOI: 10.1007/s11227-024-06306-3.


Review

For citations:


AMERIKANOV A.A., EVTUSHENKO L.G., ZUNIN V.V., VINARSKII V.M. CAD for Remote High-Level Modeling of NoC. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2025;37(1):133-144. (In Russ.) https://doi.org/10.15514/ISPRAS-2025-37(1)-8



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)