The LS-STAG Immersed Boundary Method Modification for Non-Newtonian Viscous Fluids Computation
https://doi.org/10.15514/ISPRAS-2025-37(1)-13
Abstract
A modification of the immersed boundary method LS-STAG with level functions has been developed to simulate flows of non-Newtonian viscous fluids. The viscosity of these fluids is completely determined by the intensity of the strain rate tensor at each point at any time. The LS-STAG method modification was previously developed for another class of non-Newtonian fluids (viscoelastic fluids). The modification demonstrated high accuracy even for viscoelactic flows characterized by high values of the Weissenberg number. Therefore, it is of interest to generalize the LS-STAG method for non-Newtonian viscous fluids. Note that although the LS-STAG method can be successfully used to simulate flows with moving immersed boundaries, this paper focuses only on flows with fixed ones. The developed numerical method can be used both for viscoplastic fluids and for generalized Newtonian fluids that do not have a yield point. For viscoplastic fluids, the Ofoli-Morgan-Steffe, Mizrahi-Burk, Casson, and Herschel-Bulkley models used with the Bercovier-Engelmann and Papanastasiou regularization models are considered, and for fluids that do not have a yield point, the Ellis, Cross, Carreau, Yasuda (Carreau-Yasuda) models, as well as the Ostwald-de Waele power model are considered. To verify the numerical method developed and implemented in the author's software package, a well-studied problem of power-law flow past a stationary circular airfoil was used at different values of the Reynolds number and flow index. The obtained results are in good agreement with the known in the literature computational data of other researchers. In the future, it is planned to generalize the developed modification of the LS-STAG method for non-Newtonian viscous fluids simulation for the case of moving immersed boundaries.
About the Authors
Ilia Konstantinovich MARCHEVSKYRussian Federation
Dr. Sci. (Phys.-Math.), Associate professor, Professor of Applied Mathematics department, Bauman Moscow State Technical University. Research interests: computational fluid dynamics, vortex particle methods, theory of stability, numerical methods, high performance computing, elementary mathematics.
Valeria Valentinovna PUZIKOVA
Russian Federation
Cand. Sci. (Phys.-Math.), Software Development Expert in High Performance Libraries Department, YADRO. Research interests: solvers and preconditioners for SLAE, applied mathematics software development, computational hydrodynamics, physics engines for AR/VR, high performance computations, numerical methods.
References
1. Bird R.B., Armstrong R.C., Hassager O. Dynamics of polymeric liquids. V.1. Fluid mechanics. John Wiley & Sons, 1987. 649 p.
2. Owens R.G., Phillips T.N. Computational Rheology. Imperial College Press, 2002. 417 p.
3. Mittal R., Iaccarino G. Immersed boundary methods. Annu. Rev. Fluid Mech, 2005, vol. 37, pp. 239–261. DOI: 10.1146/annurev.fluid.37.061903.175743
4. Osher S. J., Fedkiw R. Level set methods and dynamic implicit surfaces. Springer, 2003. 286 p.
5. Cheny Y., Botella O. The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties. J. Comput. Phys., 2010, vol. 229, pp. 1043-1076. DOI: 10.1016/j.jcp.2009.10.007
6. Marchevsky I.K., Puzikova V.V. The modified LS-STAG method application for planar viscoelastic flow computation in a 4:1 contraction channel. Herald of the Bauman Moscow State Technical University. Natural Sciences, 2021, № 3, pp. 46-63. DOI: 10.18698/1812-3368-2021-3-46-63
7. Puzikova V.V. Simulation of viscoelastic flow past circular airfoil by using the modified LS-STAG immersed boundary method. J. Phys.: Conf. Ser. 2019. Vol. 1348, № 1. P. 1-8. DOI: 10.1088/1742-6596/1348/1/012093
8. Пузикова В.В. Модификация метода погруженных границ LS-STAG для моделирования течений вязкоупругих жидкостей. Труды ИСП РАН, том 29, вып. 1, 2017 г., стр. 71-84. / Puzikova V. The LS-STAG Immersed Boundary Method Modification for Viscoelastic Flow Computations. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 1, 2017, pp. 71-84 (in Russian). DOI: 10.15514/ISPRAS-2017-29(1)- 5
9. Kraposhin M., Kuzmina K., Marchevsky I., Puzikova V. Study of OpenFOAM® efficiency for solving Fluid–Structure Interaction problems. OpenFOAM®: Selected papers of the 11th Workshop. 2019. P. 465 - 479.
10. Marchevsky I.K., Puzikova V.V. Numerical simulation in coupled hydroelastic problems by using the LS-STAG immersed boundary method. In: Gutschmidt S., Hewett J., Sellier M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. 2019. P. 133-145. DOI: 10.1007/978-3-030-13720-5_12
11. Marchevsky I.K., Puzikova V.V. Numerical simulation of wind turbine rotors autorotation by using the modified LS-STAG immersed boundary method. International Journal of Rotating Machinery. 2017. V. 2017. P. 1-7. DOI: 10.1155/2017/6418108
12. Ofoli R.Y., Morgan R.G., Steffe J.F. A generalized rheological model for inelastic fluid foods. J. Texture Studies. 1987. Vol. 18, pp. 213-230.
13. Mitsoulis E. Flows of viscoplastic materials: models and computations. Rheology Reviews. 2007, pp. 135 - 178.
14. Rao M.A. Rheology of Fluid and Semisolid Foods: Principles and Applications. Springer, 2007. 433 p.
15. Bercovier M., Engelman M., A finite-element method for incompressible non-Newtonian flows. J. Comput. Phys. 1980. Vol. 36, pp. 313-326.
16. Papanastasiou T.C. Flow of materials with yield. J. Rheol. 1987. Vol. 31, pp. 385-404.
17. Mizrahi S., Berk S. Flow behavior of concentrated orange juice: mathematical treatment. J. Texture Studies. 1972. Vol. 3, pp. 69-79.
18. Herschel W.H., Bulkley R. Konsistenzmessungen von Gummi-Benzol-Loesungen. Kolloid Z. 1926. Vol. 39, pp. 291-300.
19. Bingham E.C. Fluidity and Plasticity. N.-Y.: McGraw-Hill, 1922. 440 p.
20. de Waele A. Viscometry and plastometry // Oil Color Chem. Assoc. J. 1923. Vol. 6, pp. 33-69.
21. Barnes H.A., Hutton J.E., Walters K. An introduction to rheology. Elsevier, 1993. 199 p.
22. Cross M. Rheology of non-Newtonian fluids: a new flow equation for pseudo-plastic systems. J. Colloid. 1958. Vol. 20, pp. 417-437.
23. Carreau P. Rheological equations from molecular network theories. Trans. Soc.Rheol. 1972. Vol. 16, pp. 99-127.
24. Yasuda R.A.K., Cohen R. Shear-flow properties of concentrated-solutions of linear and star branched polystyrenes. Rheol. Acta. 1981. Vol. 20, pp. 163-178.
25. Sivakumar P., Bharti R.P., Chhabra R.P. Effect of power-law index on critical parameters for power-law flow across an unconfined circular cylinder // Chemical Engineering Science. 2006. V. 61, issue 18, pp. 6035-6046.
26. Bharti R.P., Chhabra R.P., Eswaran V. Steady flow of power law fluids across a circular cylinder. The Canadian Journal of Chemical Engineering. 2006. V. 84, pp. 406-421.
27. Panda S.K., Chhabra R.P. Laminar flow of power-law fluids past a rotating cylinder. Journal of Non-Newtonian Fluid Mechanics. 2010. V. 165, pp. 1442-1461.
28. Пузикова В. В. Параллельный программный комплекс LS-STAG_GNF для моделирования течений неньютоновских вязких жидкостей (обобщенных ньютоновских жидкостей); свидетельство о государственной регистрации программы для ЭВМ № 2023663406, зарегистрировано в Реестре программ для ЭВМ 16.06.23 / Puzikova V. V. Parallel software package LS-STAG_GNF for non-Newtonian viscous (generalized Newtonian) fluid simulation; Certificate of state registration of a computer program No. 2023663406, registered in the Register of Computer Programs on 06/16/23 (in Russian).
Review
For citations:
MARCHEVSKY I.K., PUZIKOVA V.V. The LS-STAG Immersed Boundary Method Modification for Non-Newtonian Viscous Fluids Computation. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2025;37(1):217-234. (In Russ.) https://doi.org/10.15514/ISPRAS-2025-37(1)-13