Estimation of Uncertainty in the Regression Problem with Bayesian Regularization of the Solution
https://doi.org/10.15514/ISPRAS-2025-37(2)-1
Abstract
The work considers the estimation of uncertainty of the regression model. The regression model is sought as a linear combination of basic functions. Coefficients in the linear combination are selected by minimizing the sum of the root-mean-square error of the approximation on the training set and the regularization term, which imposes restrictions on the set of solutions. Using a regularization term is one of the ways to combat the mathematical incorrectness of the problem. The regularization term consists of a penalty function and a regularization factor, which is an additional parameter of the regression model. The Bayesian approach allows to estimate the optimal value of the regularization factor directly from the data as being the most plausible. Constructing a regression model as a linear combination of basic functions (from a predefined set) allows us to reduce the high computational cost of the Bayesian approach by replacing the general iterative procedure by analytical expressions. A byproduct of estimating the regularization factor by Bayessian approach is the uncertainty of the regression model. The correctness of this assessment is the main subject of this research. The proposed approach of the uncertainty estimation is tested on the synthetic artificially noisy data. The proposed method estimated the noise magnitude close to the value used during data generation. The accuracy of the proposed method has outperformed the accuracy of the Gamma test, approach widely used to estimate uncertainty incorporated into the set of data.
About the Authors
Anton Sergeevich NUZHNYRussian Federation
Cand. Sci. (Phys.-Math.), Senior Researcher at IBRAE RAS, Associate Professor at the National Research University MIPT. Research interests: artificial intelligence, ill-passed problems, optimal control, data manning.
Elena Aleksandrovna SAVELEVA
Russian Federation
Cand. Sci. (Phys.-Math.), Head of Laboratory in Nuclear Safety Institute RAS. Research interests: geostatistics, artificial intelligence, data manning, sensitivity analysis.
References
1. Нужный А.С. Регуляризация Байеса при подборе весовых коэффициентов в ансамблях предикторов. Труды ИСП РАН, том 31, вып. 4, 2019 г., стр. 113-120. DOI: 10.15514/ISPRAS2019-31(4)-7 / Nuzhny A.S. Bayes regularization in the selection of weight coefficients in the predictor ensembles. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019. pp. 113-120 (in Russian). DOI: 10.15514/ISPRAS-2019-31(4)-7
2. Antonia J. Jones, Dafydd Evans, Steve Margetts, Peter M. Durrant. The Gamma Test. Chapter IX in Heuristic and Optimization for Knowledge Discovery. Edited by by Ruhul Sarker, Hussein Abbass and Charles Newton. Idea Group Publishing, Hershey, PA. 2002.
3. Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с анг. А. А. Слинкина. – 2-е изд., испр. – М.: ДМК, Пресс, 2018., 652c. / Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT Press, 2016, 800 pp, ISBN: 0262035618
4. Friedman J.H. Greedy function approximation: a gradient boosting machine // The Annals of Statistics. – 2001. – Vol. 29, no. 5. – P. 1189–1232.
5. Hastie, T., Tibshirani R., Friedman J. Chapter 15. Random Forests // The Elements of Statistical Learning: Data Mining, Inference, and Prediction. — 2nd ed. — Springer-Verlag, 2009. — 746 p.
6. В. В. Демьянов, Е. А. Савельева, ГЕОСТАТИСТИКА теория и практика, Москва, Наука, 2010, 227c. / V.V. Demyanov, E.A. Saveleva, GEOSTATISTICS theory and practice, Moscow, Nauka, 2010, 227p (in Russian)
7. Rasmussen, C. E. and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press. Cambridge, Massachusetts, 2006.
8. Z. Chen, B. Wang, How priors of initial hyperparameters affect Gaussian process regression models, Neurocomputing 275 (2018) 1702–1710.
9. А.Н. Тихонов, В.Я. Арсенин. Методы решения некорректных задач. Изд. 2-е. – М.: Наука, 1979, 285c. / A.N. Tichonov, V.Ya. Arsenin. The methods for solving ill-passed problems, Moscow, Nauka, 1979, 285p. (in Rassian)
10. А.С. Нужный. Байесовский подход к регуляризации задачи обучения сети функций радиального базиса // Искусственный интеллект и принятие решений, 2015, №2, cc. 18-24. / A.S. Nuzhny, Bayesian approach to regularization for training task of radial basic function network // Artificial intelligent and decision making, 2015, №2, pp. 18-24. (in Russian)
11. D. MacKay. Bayesian interpolation // Neural Computation, 1992, v.4, p.415–447.
Review
For citations:
NUZHNY A.S., SAVELEVA E.A. Estimation of Uncertainty in the Regression Problem with Bayesian Regularization of the Solution. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2025;37(2):7-18. (In Russ.) https://doi.org/10.15514/ISPRAS-2025-37(2)-1