Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Mathematical Modeling of a Turbulent Fluid Flow by using the Quasihydrodynamic Equations and K-omega Turbulence Model

https://doi.org/10.15514/ISPRAS-2025-37(2)-12

Abstract

In this paper, a mathematical model for solving the problem of developed turbulent flow in a channel is proposed. The equations describing the fluid flow are the Reynolds equations and the equations of the k-omega turbulence model reduced to a quasi-hydrodynamic form. For the numerical solution of the equations of the mathematical statement, a combined approach of the control volume method and the finite element method on triangular adaptive grids was used. To verify the proposed mathematical model, the problem of turbulent flow in a rectangular channel was solved. The results obtained showed a good agreement between the results of the proposed model and the results of direct numerical simulation in the turbulent sub-layer region. For further verification of the model, a number of problems of the turbulent flow past fixed sand dunes with different lee-slope angles were calculated. A comparative analysis of the calculated flow characteristics with experimental data was performed, which showed their qualitative and quantitative agreement, with the exception of the values of the turbulent kinetic energy in the case of flowing past low-angle dunes. Good agreement of the values of the Reynolds shear stress averaged over one dune and the total shear stress obtained using the proposed model with the experimental data allows us to use the proposed model to calculate the characteristics of a hydrodynamic flow passing over time-varying bed forms.

About the Authors

Kseniia Sergeevna KOROLIOVA
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Phys.-Math.), Senior Reseacher of the Laboratory of Computational Mechanics of Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, works in laboratory since 2010 year. Research interests: mathematical modeling of riverbed processes of plane rivers, computational hydrodynamics, numerical methods, bed sediment transport and bed evolution in time.



Igor Ivanovich POTAPOV
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Dr. Sci. (Phys.-Math.), Professor, Head of the Laboratory of Computational Mechanics of Computing Center of the Far Eastern Branch of the Russian Academy of Sciences since 2009 year. Research interests: mechanics of bulk environment, mechanics of heterogeneous environment, mechanics of channel processes, numerical methods, solution of systems of algebraic equations.



References

1. Liakopoulos A.; Palasis A. Turbulent Channel Flow: Direct Numerical Simulation-Data-Driven Modeling. Fluids, 2024, vol. 9, issue 62. 10.3390/fluids9030062. DOI: 10.3390/fluids9030062.

2. Hoyas S., Oberlack M., Alcántara Ávila F., Kraheberger S., Laux J. Wall turbulence at high friction Reynolds numbers // Physical Review Fluids, 2022, 7. DOI: 10.1103/PhysRevFluids.7.014602.

3. Freire L. S., Chamecki M. Large-Eddy Simulation of smooth and rough channel flows using a one-dimensional stochastic wall model. Computers & Fluids, 2021, vol. 230, 105135. DOI: 10.1016/j.compfluid.2021.105135.

4. Hoque M. A., Mallik M. S. I., Hossain M. S, Gope R. Ch., Uddin Md. A. Large eddy simulation of a turbulent channel flow using dynamic Smagorinsky subgrid scale model and differential equation wall model, \\ International Journal of Thermofluids, vol. 22, 2024, 100676. DOI: 10.1016/j.ijft.2024.100676.

5. Yusuf S. N. A., Asako Y., Che Sidik N. A., Mohamed S. B., Aziz Japar W. M. A. (2020). A Short Review on RANS Turbulence Models // CFD Letters, 2020. vol. 12, no. 11. pp. 83-96. DOI: 10.37934/cfdl.12.11.8396.

6. Liu L., Ahmed U., Chakraborty N. A Comprehensive Evaluation of Turbulence Models for Predicting Heat Transfer in Turbulent Channel Flow across Various Prandtl Number Regimes. Fluids 2024, 9, 42. DOI: 10.3390/fluids9020042.

7. Елизарова Т.Г., Калачинская И.С., Ключникова А.В., Шеретов Ю.В. Расчет конвективных течений на основе квазигидродиамических уравнений. Проблемы математической физики. М., Диалог МГУ, 1998, C. 193–208. Доступно по ссылке: https://elizarova.imamod.ru/_media/1998vychmat.pdf / Elizarova T.G., Kalachinskaia I.S., Kluchnikova A.V., Sheretov Yu. V. Calculation of convective flows based on quasi-hydrodynamic equations. Problems of Mathematical Physics. Moscow, MGU Dialogue, 1998, pp. 193-208. Available at: https://elizarova.imamod.ru/_media/1998vychmat.pdf (in Russian).

8. Снигур К.С. Математическое моделирование русловых процессов в каналах с песчано-гравийным основанием: дисс. … канд. физ.-мат. наук, Комсомольск-на-Амуре, 2016, 148 с./ Snigur K.S. Mathematical modeling of riverbed processes in channels with sand-gravel bed. Thesis, Komsomolsk-na-Amure, 2016, 148 p. DOI: 10.13140/RG.2.1.3727.8325/1 (in Russian).

9. Елизарова Т.Г., Калачинская И.С., Шеретов Ю.В., Шильников Е.В. Численное моделирование отрывных течений за обратным уступом. Прикладная математика и информатика, Труды факультета Вычислительной математики и кибернетики, М., Макс Пресс, 2003а, Т. 14. С. 85–118. Доступно по ссылке: https://elizarova.imamod.ru/_media/2003mgu1485.pdf / Elizarova T.G., Kalachinskaia I.S., Sheretov Yu.V., Shilnikov E.V. Numerical modeling of separated flows behind a backward-facing step. Applied Mathematics and Computer Science, Proceedings of the Faculty of Computational Mathematics and Cybernetics, Moscow, 2003a, vol. 14, pp. 85-118. Available at: https://elizarova.imamod.ru/_media/2003mgu1485.pdf (in Russian).

10. Елизарова Т.Г., Милюкова О.Ю. Численное моделирование течения вязкой несжимаемой жидкости в кубической каверне. Журнал вычислительной математики и математической физики, 2003б, Т. 43, № 3, С. 453–466. Доступно по ссылке: https://elizarova.imamod.ru/_media/2003vychmat.pdf / Elizarova T.G., Miliukova O.Yu. Numerical modeling of viscous incompressible fluid flow in a cubic cavity. Journal of Computational Mathematics and Mathematical Physics, 2003b, vol. 43, no.3, pp. 453–466. Available at: https://elizarova.imamod.ru/_media/2003vychmat.pdf (in Russian).

11. Wilcox, D.C. Formulation of the k-w Turbulence Model Revisited. AIAA Journal, 2008, vol. 46, no. 11, pp. 2823–2838. DOI:10.2514/1.36541.

12. Широков И.А., Елизарова Т.Г. Применение квазигазодинамических уравнений к моделированию пристеночных турбулентных течений. Прикладная математика и информатика, 2016. М.: Изд-во факультета ВМК МГУ, под ред. В.И. Дмитриева. М.: МАКС Пресс, 2016, N 51, 52-80. ISBN 978-5-317-05316-1. Доступно по ссылке: https://elizarova.imamod.ru/_media/2016mgu.pdf / Shirokov I.A., Elizarova T.G. Application of quasi-gas dynamic equations to numerical simulation of near-wall turbulent flows. Computational Mathematics and Modeling, 2017, vol. 28, no.1, pp.37-60. DOI: 10.1007/s10598-016-9344-z.

13. Елизарова Т.Г., Серегин В.В. Аппроксимация уравнений квазигидродинамки на треугольных сетках. Вестник Московского университета, Серия 3. Физика. Астрономия, 2005, № 4, С. 15-18. Available at: https://cyberleninka.ru/article/n/approksimatsiya-uravneniy-kvazigazodinamiki-na-treugolnyh-setkah/pdf / Elizarova T.G., Seregin V.V. Approximation of quasihydrodynamic equations on triangular grids. Moscow University Bulletin, Series 3. Physics. Astronomy, 2005, no. 4, pp. 15-18. Available at: https://cyberleninka.ru/article/n/approksimatsiya-uravneniy-kvazigazodinamiki-na-treugolnyh-setkah/pdf (in Russian).

14. Потапов И.И., Снигур К.С., Цой Г.И. О моделировании обтекания пологих песчаных дюн турбулентным потоком // Вычислительные технологии, 2019. – Т. 24, № 6. – С. 99-107. DOI: 10.25743/ICT.2019.24.6.012. / Potapov I.I., Snigur K.S., Tsoy G.I. On the modelling of turbulent flow over low-angle sand dunes. Computational Technologies, 2019, vol. 24, no. 6, pp. 99–107. DOI: 10.25743/ICT.2019.24.6.012. (In Russian).

15. Клавен А.Б., Копалиани З.Д. Экспериментальные исследования и гидравлическое моделирование речных потоков и руслового процесса. СПб, Нестор-История, 2011, 504 с. / Klaven A.B., Kopaliani Z.D. Experimental studies and hydraulic modeling of river flows and channel process. Saint-Petersburg, Nestor-History, 2011, 504 p. (in Russian).

16. Елизарова Т.Г. Квазигазодинамические уравнения и методы расчета вязких течений. Лекции по математическим моделям и численным методам в динамике газа и жидкости. М., Научный Мир, 2007, 350 с. Доступно по ссылке: https://www.imamod.ru/~elizar/_media/course-book.pdf / Elizarova T.G. Quasi-gasdynamic equations and methods for calculating viscous flows. Lectures on mathematical models and numerical methods in gas and liquid dynamics. Moscow, Science World, 2007, 350 p. Available at: https://www.imamod.ru/~elizar/_media/course-book.pdf (in Russian).

17. Stigler J. Introduction of the analytical turbulent velocity profile between two parallel plates. 18th International conference Engineering Mechanics, Czech Republic, 2012. Paper No. 148. pp. 1343-1352. Available at: https://www.researchgate.net/publication/280729357_INTRODUCTION_OF_THE_ANALYTICAL_TURBULENT_VELOCITY_PROFILE_BETWEEN_TWO_PARALLEL_PLATES.

18. Peng Sh.-H., Davidson L., Holmberg S. The Two-Equation Turbulence k-w Model Applied to Recirculating Ventilation Flows. Chalmer University of Technology Department of Thermo- and Fluid Dynamics: Publ. Nr. 96/13, 1998, 25 p. Available at: https://www.tfd.chalmers.se/~lada/postscript_files/tfd9613.pdf.

19. Флетчер, К. Численные методы на основе метода Галёркина. М., Мир, 1988, 353 с / Fletcher C.A.J. Computational Galerkin Methods. In: Computational Galerkin Methods. Springer Series in Computational Physics, 1984, 310 p. DOI: 10.1007/978-3-642-85949-6.

20. Луцкий А.Е., Северин А.В. Простейшая реализация метода пристеночных функций. Препринты ИПМ им. М.В. Келдыша, 2013, № 38, 22 с. Доступно по ссылке: http://library.keldysh.ru/preprint.asp?id=2013-38 / Lutsky, A.E., Severin, A.V. The minimal realization of the wall functions method. Preprint Keldysh Institute of Appl. Math., 2013, no. 38, 22 p. Availabe at: http://library.keldysh.ru/preprint.asp?id=2013-38 (in Russian).

21. Королёва (Снигур) К.С., Потапов И.И. Репозиторий исходного кода для задачи расчета гидродинамики и русловых деформаций в речном канале. https://github.com/SnigurKS/RANS-QGD.git (Дата публикации: 31.10.2014, дата обращения: 31.10.2014).

22. Kwoll E., Venditti J. G., Bradley R. W., Winter C. Flow structure and resistance over subaquaeous high- and low-angle dunes // Journal of Geophysical Research. Earth Surface, 2016. vol. 121, pp. 545-564. DOI: 10.1002/2015JF003637.

23. Stoesser Th., von Terzi D., Rodi W., Olsen N. R. B. RANS simulations and LES of flow over dunes at low relative submergence ratios // Proceedings of the 7th International Conference on HydroScience and Engineering Philadelphia, USA September 10-13, 2006 (ICHE 2006). 13 p. Availabe at: https://researchdiscovery.drexel.edu/esploro/outputs/journalArticle/RANS-simulations-and-LES-of-flow/991014632514604721/.

24. Smith J.D., McLean S.R. Spatially averaged flow over a wavy surface // Journal of Geophysical Research, 1977. vol.82, pp. 1735-1746. DOI: 10.1029/JC082i012p01735.

25. Sukhodolov A.N., Fedele J.J., Rhoads B.L. Structure of flow over alluvial bedforms: An experiment on linking field and laboratory methods // Earth Surface Processes Landforms, 2006. vol. 31, no. 10, pp. 1292-1310. DOI: 10.1002/esp.1330.

26. Shugar D.H., Kostaschuk R.A., Best J.L., Parsons D.R., Lane S.N., Orfeo O., Hardy R.J. On the relationship between flow and suspended sediment transport over the crest of a sand dune, Río Paraná, Argentina // Sedimentology, 2010. vol. 57, no. 1. pp. 252-272. DOI: 10.1111/j.1365-3091.2009.01110.x.

27. Bradley R.W., Venditti J.G., Kostaschuk R.A., Church M., Hendershot M., Allison M.A. Flow and sediment suspension events over low-angle dunes: Fraser Estuary, Canada // Journal of Geophysical Research. Earth Surface, 2013. vol. 118, pp. 1693-1709. DOI: 10.1002/jgrf.20118.

28. Paarlberg A. J., Dohmen-Janssen C. M., Hulscher S. J. M. H., Termes P., Schielen R. Modelling the effect of time-dependent river dune evolution on bed roughness and stage // Earth Surf. Processes Landforms, 2010. vol. 35, no. 15. pp. 1854-1866. DOI: 10.1002/esp.2074.

29. van Rijn L.C. Principles of sediment transport in rivers, estuaries and coastal seas. Amsterdam: Aqua Publications– 1993. 654 p. ISBN: 9789080035621.


Review

For citations:


KOROLIOVA K.S., POTAPOV I.I. Mathematical Modeling of a Turbulent Fluid Flow by using the Quasihydrodynamic Equations and K-omega Turbulence Model. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2025;37(2):163-180. (In Russ.) https://doi.org/10.15514/ISPRAS-2025-37(2)-12



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)