Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

2D Ray Tracing Algorithm as a Preprocessing Method for Wave Attractor Problems

https://doi.org/10.15514/ISPRAS-2025-37(6)-45

Abstract

Wave attractor numerical simulation is a costly problem that requires a precise calculation method as well as thorough setup parameters determination. These two facts require using preprocessing methods before CFD simulation. The coherent structure for a geometry and stratification selected will appear in a certain range of perturbation frequencies, which are typically unknown in advance. To check whether the attractor forms, one can run a ray tracing which represents the propagation of internal wave narrow beams in inviscid linear approximation of the Navier-Stokes equations. The current article describes the algorithm that can be used for the ray tracing on a wide class of problems. It is shown that this method is capable to detect specific forms of attractors under specific conditions. Additionally, a ray convergence measure estimation is proposed.

About the Author

Stepan Alekseevich ELISTRATOV
Shirshov Institute of Oceanology of the Russian Academy of Sciences, Ivannikov Institute for System Programming of the Russian Academy of Sciences
Russian Federation

Employee of the Laboratory of digital modelling of technical systems of the Institute for System Programming of the RAS since 2021. Research interests: wave attractors, CFD, applied math.



References

1. L.R.M. Maas and F.-P. A. Lam. Geometric focusing of internal waves. Journal of Fluid Mechanics, 300:1–41, 1995.

2. M. Lenci et al. Internal-wave billiards in trapezoids and similar tables. Nonlinearity 36, 1029, 2023

3. L.R.M. Maas. Wave attractors: linear yet nonlinear. International Journal of Bifurcation and Chaos. 15. 2757-2782, 2005. 10.1142/S0218127405013733.

4. G. Pillet et al. Internal wave attractors in 3D geometries: A dynamical systems approach. European Journal of Mechanics – B/Fluids, 77, 1-16, 2019. 10.1016/j.euromechflu.2019.01.008.

5. I. Sibgatullin, A. Petrov, X. Xu, and L.R.M. Maas. On (n,1) wave attractors: Coordinates and satura-tion time. Symmetry, 14(2), 2022.

6. S.A. Elistratov. Halocline internal wave attractors visualization. Scientific visualization, 16(1):82–94, 2024.

7. S.A. Elistratov and I.I. But. Towards the salinity profile influence on an internal wave attractor for-mation. Water waves, 2024

8. S.A. Elistratov and I.I. But. A viscous effect of wave attractor in geometry with underwater peak. Intelligent Marine Technology and Systems, 2(15), 2024

9. Сибгатуллин И.Н., Ерманюк Е.В., Ватутин К.А., Рязанов Д.А., Сюй С., 2019, Океанологические

10. исследования, 2019, Том 47, No 1, С. 112–115

11. C. Pacary et al. Observation of inertia-gravity wave attractors in an axisymmetric enclosed basin. Physical Review Fluids, 8(10), 104802:1-20, 2023. 10.1103/physrevfluids.8.104802

12. J. Hazewinkel et al. Observations on the robustness of internal wave attractors to perturbations. Physics of Fluids, 22., 2010. 10.1063/1.3489008.

13. C. Brouzet et al. Scale effects in internal wave attractors. Phys. Rev. Fluids, 2:114803, 2017.

14. D.E. Mowbray, B.S.H. Rarity. A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. Journal of Fluid Mechanics. 1967;28(1):1-16. doi:10.1017/S0022112067001867.

15. L. Gostiaux et al. A novel internal waves generator. Experiments Fluids. 2007, vol. 42, pp. 121-130.

16. D.A. Ryazanov et al. Biharmonic Attractors of Internal Gravity Waves. Fluid Dynamics. 2021, 56(3), pp .403-412.

17. S. Elistratov, I. But. On The Visualization of Subattractor Under Mixed Tidal Forcing. Scientific Visualization, 2025, vol. 17(1), 138-149.

18. Н. Н. Калиткин К17. Численные методы: учеб. пособие. 2-е изд., исправленное. СПб.: БХВ-Петербург, 2011, 592 с.: ил. (Учебная литература для вузов).

19. S.A. Elistratov, I.I. But. Wave attractor in basin with underwater step: from discrete to continuous en-ergy spectrum. Indian J Phys (2025). https://doi.org/10.1007/s12648-025-03560-w.


Review

For citations:


ELISTRATOV S.A. 2D Ray Tracing Algorithm as a Preprocessing Method for Wave Attractor Problems. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2025;37(6):189-202. (In Russ.) https://doi.org/10.15514/ISPRAS-2025-37(6)-45



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)