Preview

Труды Института системного программирования РАН

Расширенный поиск

Применение облачных вычислений для анализа данных большого объема в умных городах

https://doi.org/10.15514/ISPRAS-2016-28(6)-9

Полный текст:

Аннотация

В этой статье рассматривается вопрос применения анализа данных большого объема с использованием облачных вычислений для решения задач анализа дорожного траффика в контексте «умных» городов. Предложенное решение базируется на модели параллельных вычислений MapReduce, реализованной на платформе Hadoop. Анализируются два экспериментальных случая: оценка качества общественного транспорта на основе анализа истории местоположения автобусов, и оценка мобильности пассажиров при помощи анализа истории покупок билетов с транспортных карт. Оба эксперимента используют реальную базу данных системы общественного транспорта Монтевидео в Уругвае. Результаты эксперимента показали, что рассмотренная модель действительно позволяет эффективно обрабатывать большие объемы данных.

Об авторах

Рензо Массобрио
Республиканский университет Уругвая
Уругвай


Серхио Несмачнов
Республиканский университет Уругвая
Уругвай


Андрей Черных
Центр научных исследований и высшего образования
Мексика


Арутюн Аветисян
Институт системного программирования РАН
Россия


Глеб Радченко
Южно-Уральский государственный университет
Россия


Список литературы

1. Deakin, M., & Al Waer, H. (2011). From intelligent to smart cities. Intelligent Buildings International, 3(3), 140-152.

2. Grava, S. (2003). Urban transportation systems. Choices for communities.

3. Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M.: (2016). The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies 68, 285-299.

4. Sussman, J. S. (2008). Perspectives on intelligent transportation systems (ITS). Springer Science & Business Media.

5. Figueiredo, L., Jesus, I., Machado, J. T., Ferreira, J., & de Carvalho, J. M. (2001). Towards the development of intelligent transportation systems. In Intelligent transportation systems (Vol. 88, pp. 1206-1211).

6. Foster I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

7. White T. (2009). Hadoop: The Definitive Guide (1st ed.). O'Reilly Media, Inc.

8. Attiya H. & Welch J. (2004). Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley & Sons.

9. Buyya R., Broberg J., & Goscinski. A. M. (2011). Cloud Computing Principles and Paradigms. Wiley Publishing.

10. Dean J. & Ghemawat S. (2008). MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (January 2008), 107-113.

11. Shafer, J., Rixner, S., & Cox, A. L. (2010). The hadoop distributed filesystem: Balancing portability and performance. In IEEE International Symposium on Performance Analysis of Systems & Software (pp. 122-133).

12. Zheng, X., Chen, W., Wang, P., Shen, D., Chen, S., Wang, X.,.. & Yang, L. (2016). Big data for social transportation. IEEE Transactions on Intelligent Transportation Systems, 17(3), 620-630.

13. Oh, S., Byon, Y. J., & Yeo, H. (2016). Improvement of Search Strategy With K-Nearest Neighbors Approach for Traffic State Prediction. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1146-1156.

14. Shi, Q., & Abdel-Aty, M. (2015). Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transportation Research Part C: Emerging Technologies, 58, 380-394.

15. Ahn, J., Ko, E., & Kim, E. Y. (2016). Highway traffic flow prediction using support vector regression and Bayesian classifier. In 2016 International Conference on Big Data and Smart Computing (BigComp) (pp. 239-244). IEEE.

16. Chen, X. Y., Pao, H. K., & Lee, Y. J. (2014). Efficient traffic speed forecasting based on massive heterogenous historical data. In Big Data (Big Data), 2014 IEEE International Conference on (pp. 10-17). IEEE.

17. Xia, D., Wang, B., Li, H., Li, Y., & Zhang, Z. (2016). A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting. Neurocomputing, 179, 246-263.

18. Nesmachnow S. (2010). Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61 (1), 12-15.

19. Yang H., Sasaki T., Iida Y., Asakura Y. (1992). Estimation of origin-destination matrices from link traffic counts on congested networks, Transportation Research Part B: Methodological, Volume 26, Issue 6, Pages 417-434.

20. Trépanier, M., Tranchant, N., & Chapleau, R. (2007). Individual trip destination estimation in a transit smart card automated fare collection system. Journal of Intelligent Transportation Systems, 11(1), 1-14.

21. Wang, W., Attanucci, J. P., & Wilson, N. H. (2011). Bus passenger origin-destination estimation and related analyses using automated data collection systems. Journal of Public Transportation, 14(4), 7.

22. Munizaga, M. A., & Palma, C. (2012). Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago, Chile. Transportation Research Part C: Emerging Technologies, 24, 9-18.

23. Peña D., Tchernykh A., Nesmachnow S., Massobrio S., Drozdov A. Y., Garichev S. N. (2016). Multiobjective vehicle type and size scheduling problem in urban public transport using MOCell. IEEE International conference Engineering & Telecommunications, Moscow, Russia.

24. R. Massobrio, A. Pías, N. Vázquez, & S. Nesmachnow (2016). Map-Reduce for Processing GPS Data from Public Transport in Montevideo, Uruguay. In 2do Simposio Argentino de Grandes Datos.

25. E. Fabbiani, P. Vidal, R. Massobrio, & S. Nesmachnow (2016). Distributed Big Data analysis for mobility estimation in Intelligent Transportation Systems. In Latin American High Performance Computing Conference.


Для цитирования:


Массобрио Р., Несмачнов С., Черных А., Аветисян А., Радченко Г. Применение облачных вычислений для анализа данных большого объема в умных городах. Труды Института системного программирования РАН. 2016;28(6):121-140. https://doi.org/10.15514/ISPRAS-2016-28(6)-9

For citation:


Massobrio R., Nesmachnow S., Tchernykh A., Avetisyan A., Radchenko G. Towards a Cloud Computing Paradigm for Big Data Analysis in Smart Cities. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2016;28(6):121-140. (In Russ.) https://doi.org/10.15514/ISPRAS-2016-28(6)-9

Просмотров: 187


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)