Preview

Труды Института системного программирования РАН

Расширенный поиск

Численное исследование характеристических мод и частот течения в высокоскоростных компрессорах

https://doi.org/10.15514/ISPRAS-2017-29(1)-2

Аннотация

В статье описан разработанный решатель pisoCentralDyMFoam с открытым исходным кодом и исследуется применение метода главных компонент в промышленных задачах моделирования турбокомпрессоров. Метод главных компонент реализован в Apache Spark, что позволяет использование распределенных вычислений. Разработанный решатель основан на гибридной схеме Курганова-Тадмора/PISO. Исследования проводились для геометрии компрессора, приближенной к реальному прототипу с известными резонансными частотами. Предварительно решатель был валидирован на примере центробежного компрессора ERCOFTAC. Коэффициенты матриц собственного ортогонального разложения получены из набора временных срезов, рассчитанных с помощью модели Навье-Стокса. Для вычисления мод собственного ортогонального разложения использовалось несколько сотен последовательных временных срезов полей скорости и давления, взятых на поверхности крыльчатки. Собственные значения, рассчитанные методом собственного ортогонального разложения, соответствуют кинетической энергии, содержащейся в каждой характеристической моде. Коэффициенты, не зависящие от времени, определяют вклад каждого элементарного объема и позволяют определить области, влияющие на среднее течение на определенной частоте после применения быстрого преобразования Фурье к временным коэффициентам ортогонального разложения. В результате применения метода, характеристические моды отсортированы в соответствии с их кинетической энергией. Нулевая мода соответствует наибольшей энергии, описывает среднее течение и имеет относительно малые амплитуды. Описанный подход был проверен на вычислительно простой двумерной задаче и затем применен к высокоскоростному компрессору. Было показано, что третья характеристическая мода течения имеет пик на частоте 12970 Гц, около двух резонансных частот 12000 Гц и 13700 Гц. Третья и четвертая характеристические моды представляют собой флуктуации давления в спутном следе позади лопаток. Описанный подход позволит анализировать динамику течения более эффективно, в сравнении с быстрым преобразованием Фурье. Кроме того, метод может быть использован для сжатия данных и разработки моделей пониженной размерности.

Об авторах

М. Д. Калугин
Институт системного программирования РАН
Россия


И. Е. Евдокимов
ООО "АВИАТИКА"
Россия


Список литературы

1. Epureanu, BI; Dowell, EH; Hall, KC. A parametric analysis of reduced order models of potential flows in turbomachinery using proper orthogonal decomposition. Proceedings of the ASME Turbo Expo, vol. 1 (2001). doi: 10.1115/2001-GT-0434.

2. Rochuon, N., Trébinjac, I., Billonnet, G. An Extraction of the Dominant Rotor-Stator Interaction Modes by the Use of Proper Orthogonal Decomposition (POD). Journal of Thermal Science, Science Press, Vol.15, N°2, pp.109-114, June 2006.

3. Clark ST, Besem FM, Kielb RE, Thomas JP. Developing a Reduced-Order Model of Nonsynchronous Vibration in Turbomachinery Using Proper-Orthogonal Decomposition Methods. ASME. J. Eng. Gas Turbines Power. 2015;137(5). doi:10.1115/1.4028675.

4. Danaila, S., Niculescu, M. L. Unsteady effects at the interface between impeller-vaned diffuser in a low pressure centrifugal compressor. INCAS Bulletin5.1, 2013, p. 71-86.

5. Fossati,M., Nilamdeen, S., Habashi, W.G., Moustapha, H. Parametric Analysis of 3D Turbomachinery flows via Reduced Order Modelling. Conference Paper, 21st International Symposium on Air Breathing Engines, September 2013.

6. Kraposhin, M., Bovtrikova, A., Strijhak, S. Adaptation of Kurganov-Tadmor Numerical Scheme for Applying in Combination with the PISO Method in Numerical Simulation of Flows in a Wide Range of Mach Numbers. Procedia Computer Science, Vol. 66, 2015, Pages 43-52, ISSN 1877-0509, doi: 10.1016/j.procs.2015.11.007.

7. Amirante, D. and Hills, N.J. and Barnes, C.J. A moving mesh algorithm for aero-thermo-mechanical modelling in turbomachinery. International Journal for Numerical Methods in Fluids, Vol. 70 (2012), Number 9, p. 1118–1138, doi: 10.1002/fld.2734

8. Petit, O., Nilson, H., Page, M. and Beaudoin. The ERCOFTAC Centrifugal Pump OpenFOAM Case-Study. In Proceedings of the 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problem in Hydraulic Machinery and Systems, Brno, Czech Republic.

9. Combès, J.F., Test Case U3: Centrifugal Pump with a Vaned Diffuser. ERCOFTAC Seminar and Workshop on Turbomachinery Flow Prediction VII, Aussois, jan 4-7, 1999.

10. Ubaldi M., Zunino P., Barigozzi G. and Cattanei A. An Experimental Investigation of Stator Induced Unsteadiness on Centrifugal Impeller Outflow. Journal of Turbomachinery, vol.118, 41-54, 1996.

11. Petit, P. and Nilsson, H. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser, International Journal of Rotating Machinery, Volume 2013, 14 pages, doi: 10.1155/2013/961580


Рецензия

Для цитирования:


Калугин М.Д., Евдокимов И.Е. Численное исследование характеристических мод и частот течения в высокоскоростных компрессорах. Труды Института системного программирования РАН. 2017;29(1):21-38. https://doi.org/10.15514/ISPRAS-2017-29(1)-2

For citation:


Kalugin M., Evdokimov I. Numerical study of characteristic modes and frequencies of flow in high-speed compressors. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(1):21-38. https://doi.org/10.15514/ISPRAS-2017-29(1)-2



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)