Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Validation of open source code BEM++ for simulation of acoustic problems

https://doi.org/10.15514/ISPRAS-2017-29(1)-3

Abstract

Testing of capabilities of open-source BEM++ code for simulation of acoustics problems at medium and high frequencies is presented. The BEM++ library is a universal tool, which allows to build discrete models for boundary integral operators (single-, double- and adjoint double-layer potential operators and hypersingular boundary operators) and solve boundary element method problems for Helmholtz, Laplace and Maxwell equations using Python libraries. Solution for the test problem of scattering plane wave on spherical obstacle with using BEM++ demonstrates good convergence with the results of analytical solutions. The relative errors satisfy to acceptable values 5% in solving engineering tasks, this fact allows to use this library as an alternative to commercial software. Capability of BEM++ library to calculate acoustic fields for frequencies from 5 Hz to 5 kHz enables move to solving more difficult engineering challenges of the aerospace industry. The main restriction for this is a time of computation, because only shared-memory technology of the code parallelization is implemented. However, open architecture of the library allows to remove this disadvantage. Meshes for BEM++ can have big size and be based on E geometric model with complex geometrical objects. Also, it should be noted, that for implementation to engineering practice it is desirable to integrate the library with existing interactive systems of pre- and post-processing, for example, with Salome.

About the Authors

P. S. Lukashin
Bauman Moscow State Technical University
Russian Federation


S. V. Strijhak
Institute for System Programming of the Russian Academy of Sciences
Russian Federation


G. A. Shcheglov
Bauman Moscow State Technical University
Russian Federation


References

1. Nosatenko P.YA., Bobrov A.V., Baranov M.L., Shlyapnikov A.N. Experimental determination of acoustic loads at launching of rocket media “Strela” and calculation of the modes of experimental testing of spacecrafts. Vestnik Samarskogo gosudarstvennogo aehrokosmicheskogo universiteta [Vestnik of Samara state aerospace University], 2010, № 2. pp. 112-123 (in Russian).

2. Dyad'kin A.A. Aerogasdynamics of rocket and space complex "Sea launch". Kosmicheskaya tekhnika i tekhnologii [Space engineering and technology], 2014, № 2 (5). pp. 14-31 (in Russian).

3. Troclet B., Alestra S., Srithammavanh V., Terrasse I. A Time Domain Inverse Method for Identification of Random Acoustic Sources at Launch Vehicle Lift-Off. J. Vib. Acoust. 2011, 133(2) pp. 1-11.

4. Kolesnikov A.V. Lecture series "Testing of the constructions and systems of space vehicles", 2007, Available at: airspot.ru/book/file/659/ispytanija_ka.pdf, accessed 28.12.2016 (in Russian).

5. Liberman M.YU. Modeling the formation of a launcher loads that have a dynamic effect on spacecraft. Voprosy ehlektromekhaniki. Trudy VNIIEM, [Questions of electromechanics, Proc. VNIIEM], 2013, v. 136. №5. pp. 19-30 (in Russian).

6. Actran - software package for an acoustic analysis, www.mscsoftware.ru/products/actran, accessed 28.12.2016.

7. LMS Virtual.Lab Acoustics for Acoustic Simulation, http://www.plm.automation.siemens.com/ru_ru/products/lms/virtual-lab/acoustics, accessed 28.12.2016.

8. ANSYS Structures Harmonic Vibrations and Acoustics, www.ansys.com/products/structures/vibrations/harmonic-vibrations-and-acoustics, accessed 28.12.2016.

9. Free Acoustics and Ultrasound Software, www.k-wave.org/acousticsoftware.php, accessed 28.12.2016.

10. CodeAster manual. R4.02.01. Finite elements in acoustic. Available at: www.code-aster.org/doc/v12/en/man_r/r4/r4.02.01.pdf, accessed 28.12.2016.

11. Elmer, csc.fi/web/elmer/elmer, accessed 28.12.2016.

12. Kraposhin, M.V. and Strizhak, S.V., How to Implement Simple Acoustic Analogy in OpenFOAM. 8th International OpenFOAM Workshop 2013, Jeju, Korea.

13. Kupradze V. D. Boundary problems of oscillation theory and integral equations. Moskva, Gos. izd-vo tekhniko-teoreticheskoj literatury [Moscow, State publishing technical and theoretical literature], 1950, 280 p. (in Russian).

14. Boundary element method, www.boundary-element-method.com, accessed 28.12.2016.

15. W. Hackbusch, Hierarchical matrices: Algorithms and analysis, Springer, Berlin, 2015, 510 p., doi: 10.1007/978-3-662-47324-5

16. Liu Y. J., Fast Multipole Boundary Element Method - Theory and Applications in Engineering, Cambridge University Press, New York, 2009, 235 p.

17. S.N.Chandler-Wilde, S.Langdon, I.G.Graham, E.A.Spence, Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering, Acta Numerica, 2012, p. 89-305, doi: 10.1017/S0962492912000037.

18. FastBEM Acoustics, www.fastbem.com, accessed 28.12.2016.

19. AcouSTO, acousto.sourceforge.net/index.php, accessed 28.12.2016.

20. The BEM++ project: www.bempp.org, accessed 28.12.2016.

21. L.F. Lependin, Acoustics. Moskva «Vysshaja shkola» [Moscow "High school"], 1978, 448 p. (in Russian)

22. M. Betcke T., Arridge S., Phellips J., Schweiger M. Solving Boundary Integral Problems with BEM++. Available at: http://www.bempp.org/files/bempp-toms-preprint.pdf, accessed 28.12.2016.


Review

For citations:


Lukashin P.S., Strijhak S.V., Shcheglov G.A. Validation of open source code BEM++ for simulation of acoustic problems. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(1):39-52. (In Russ.) https://doi.org/10.15514/ISPRAS-2017-29(1)-3



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)