The LS-STAG Immersed Boundary Method Modification for Viscoelastic Flow Computations
https://doi.org/10.15514/ISPRAS-2017-29(1)-5
Abstract
References
1. Owens R.G., Phillips T.N. Computational Rheology. London: Imperial College Press, 2002. 417 p.
2. Galdi G.P., Rannacher R., Robertson A.M., Turek S. Hemodynamical Flows: Modeling, Analysis and Simulation. N. Y.: Springer, 2008. 501 p.
3. Kim J.M., Kim C., Kim J.H., Chung C., Ahn K.H., Lee S.J. High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid. J. Non-Newtonian Fluid Mech. 2005, no. 129, pp. 23-37.
4. Mittal R., Iaccarino G. Immersed boundary methods. Annu. Rev. Fluid Mech., 2005, no. 37, pp. 239-261.
5. Cheny Y., Botella O. The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties. J.Comp.Phys., 2010, no.229, pp.1043-1076.
6. Osher S., Fedkiw R.P. Level set methods and dynamic implicit surfaces. N. Y.: Springer, 2003. 273 p.
7. Puzikova V.V., Marchevsky I.K. Extension of the LS-STAG immersed boundary method for RANS-based turbulence models and its application for numerical simulation in coupled hydroelastic problems. Proc. VI International Conference on Coupled Problems in Science and Engineering. Venice, 2015, pp. 532-543.
8. Puzikova V.V. On generalization of the LS-STAG immersed boundary method for Large Eddy Simulation and Detached Eddy Simulation. Proc. Advanced Problems in Mechanics International Summer School-Conference. St.-Petersburg. 2015, pp. 411-417.
9. Marchevsky I., Puzikova V. Application of the LS-STAG Immersed Boundary Method for Numerical Simulation in Coupled Aeroelastic Problems. Proc. 11th World Congress on Computational Mechanics, 5th European Conference on Computational Mechanics, 6th European Conference on Computational Fluid Dyn. Barcelona, 2014, pp.1995-2006.
10. Puzikova V.V. Realization of parallel computations in the software package «LS-STAG_turb» for viscous incompressible flow simulation on systems with shared memory. Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 1, 2016, pp. 221-242 (in Russian). DOI: 10.15514/ISPRAS-2016-28(1)-13.
11. Uilkinson U.L. Non-newtonian fluids. Moscow: Мир, 1964. 216 p. (in Russian)
12. Maxwell J.C. On the dynamical theory of gases. Philos. Trans. R. Soc. 1867, no. 157, P. 49-88.
13. Jeffreys H. The Earth Its Origin, History and Physical Constitution. Cambridge: Cambridge University Press, 1929. 612 p.
14. Oldroyd J.G. On the formulation of rheological equations of state. Proc. Roy. Soc. London. 1950, no. 200, pp. 523-541.
15. Johnson M.W., Segalman D. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newton. Fluid Mech., 1977, no. 2, pp. 255-270.
16. Intel® Cilk™ Plus. URL: https://software.intel.com/ru-ru/node/522579 (accessed: 25.10.2015).
17. Reinders J. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism. Sebastopol: O'Reilly, 2007. 336 p.
18. Keiller R.A. Spatial decay of steady perturbations of plane Poiseuille flow for the Oldroyd-B equation. J. Non-Newton. Fluid Mech., 1993, vol. 46, pp. 129-142.
19. Hayat T., Khan M., Ayub M. Exact solutions of flow problems of an Oldroyd-B fluid. · J. Applied Math. and Comp. 2004, vol. 151, pp. 105-119.
Review
For citations:
Puzikova V. The LS-STAG Immersed Boundary Method Modification for Viscoelastic Flow Computations. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(1):71-84. (In Russ.) https://doi.org/10.15514/ISPRAS-2017-29(1)-5