Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM
https://doi.org/10.15514/ISPRAS-2017-29(1)-7
Abstract
About the Authors
A. N. NurievRussian Federation
A. I. Yunusova
Russian Federation
O. N. Zaitseva
Russian Federation
References
1. Chernous'ko F. L. The optimal periodic motions of a two-mass system in a resistant medium. PMM [ J. Appl. Math. Mech.], 72, 2008, pp. 202-215 (in Russian).
2. Bolotnik N.N., Figurina T.Y., Chernous'ko F.L. Optimal control of the rectilinear motion of a two-body system in a resistive medium. PMM [J. Appl. Math. Mech], 76, 2012, pp. 3-22 (in Russian).
3. Lighthill M.J. On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers. Comm. Pure Appl. Math, 5(2), 1952, pp. 109-118.
4. Saffman P.G. The Self-Propulsion of a Deformable Body in a Perfect Fluid. J. Fluid Mech., 28(2), 1967, pp. 385-389.
5. Ramodanov S.M., Tenenev V.A., Treschev D.V. Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid. Regul. Chaotic Dyn., 17(6), 2012, pp. 547-558.
6. Chernous’ko F.L. On the motion of a body containing a movable internal mass. Dokl. RAN [Dokl. Phys.], 450(1), 2005, pp. 56-60 (in Russian).
7. Chernous’ko F.L. Analysis and optimization of the motion of a body controlled by means of a movable internal mass. PMM [J. Appl. Math. Mech.], 70(6), 2006, pp. 915-941 (in Russian).
8. Volkova L.Yu., Jatsun S.F. Control of the Three-Mass Robot Moving in the Liquid Environment. Nelinejnaja dinamika [J. Nonlin. Dyn.], 7(4), 2011, pp. 845-857 (in Russian).
9. Childress S., Spagnolie S.E., Tokieda T.A. Bug on a Raft: Recoil Locomotion in a Viscous Fluid. J. Fluid Mech., 669, 2011, pp. 527-556.
10. Auziņš J., Beresņevičs V., Kaktabulis I., Kuļikovskis G. Dynamics of Water Vehicle with Internal Vibrating Gyrodrive. Vibration Problems ICOVP 2011. Supplement: The 10th International Conference on Vibration Problems, Czech Republic, Prague, 5-8 September.
11. Vetchanin E. The Self-propulsion of a Body with Moving Internal Masses in a Viscous Fluid. Regular and Chaotic Dynamics, 18, 2013, pp. 100-117.
12. Egorov A.G., Zakharova O.S. The energyoptimal motion of a vibrationdriven robot in a resistive medium. PMM [J. Appl. Math. Mech.], 74(4), 2010, pp. 620-632 (in Russian).
13. Egorov A.G., Zakharova O.S. Optimal quasistationar motion of vibrationdriven robot in a viscous liquid. Izvestija VUZov. Matematika [Russian Mathematics (Iz. VUZ)], 2, 2012, pp. 57-64 (in Russian).
14. Egorov A.G., Zakharova O.S. The Energy-Optimal Motion of a Vibration-Driven Robot in a Medium with a Inherited Law of Resistance. Izvestija RAN. Teorija i sistemy upravlenija [J. of Computer and Systems Sciences International], 3, 2015, pp. 168-176 (in Russian).
15. Nuriev A. N., Zakharova O.S. Simulation of the wedge-shaped two-mass vibration-driven robot motion in a viscous fluid. [Computational Continuum Mechanics], 9, 2016, pp. 5-15 (in Russian).
16. Open foam (the open source cfd toolbox): User guide version 2.2.1, URL: http://www.openfoam.org/docs/user/, 2.07.2016.
17. Unihub.ru, Available at: https://unihub.ru/about, accessed 2.07.2016.
18. Jasak H., Weller H.G., Gosman A D. High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Meth. Fluids, 1999, vol.31, pp. 431-449.
19. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. thesis, London: Imperial College, University of London, 1996.
20. Issa R.I. Solution of implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys., 1986, vol. 62, pp. 40-65.
21. Behrens T. Openfoam's basic solvers for linear systems of equations. Technical Report, Technical University of Denmark, Lingby Available at: http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-report-fin.pdf, accessed 10.10.2016.
22. Nuriev A. N., Zaytseva O.N., Moscheva E.E., Yunusova A.I. Structure of secondary flow around cylinder triangular, performs harmonic oscillations in a viscous incompressible fluid. Vestn. Kaz. tehnologicheskogo universiteta [Heald of Kazan Technological University], 16, 2015, pp. 239-242 (in Russian).
23. Martinez G. Caractristiques dynamiques et thermiques de l'coulement autour d'un cylindre circulaire a nombres de reynolds moderes. Ph.D. thesis,I.N.P. Toulouse, 1979
24. De A. K., Dalal A. Numerical simulation of unconfined flow past a triangular cylinder. Int. J. Numer. Meth. Fluids, 2006, No. 52, p. 801-821.
Review
For citations:
Nuriev A.N., Yunusova A.I., Zaitseva O.N. Simulation of the wedge-shaped vibration-driven robot motion in the viscous fluid forced by different laws of internal mass movement in the package OpenFOAM. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(1):101-118. (In Russ.) https://doi.org/10.15514/ISPRAS-2017-29(1)-7