Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

The Metric Travelling Salesman Problem: The Experiment on Pareto-optimal Algorithms

https://doi.org/10.15514/ISPRAS-2017-29(4)-8

Abstract

The Metric Travelling Salesman Problem is a subcase of the Travelling Salesman Problem (TSP), where the triangle inequality holds. It is a key problem in combinatorial optimization. Solutions of the Metric TSP are generally used for costs minimization tasks in logistics, manufacturing, genetics and other fields. Since this problem is NP-hard, heuristic algorithms providing near optimal solutions in polynomial time will be considered instead of the exact ones. The aim of this article is to experimentally find Pareto optimal heuristics for Metric TSP under criteria of error rate and run time efficiency. Two real-life kinds of inputs are intercompared - VLSI Data Sets based on very large scale integration schemes and National TSPs that use geographic coordinates of cities. This paper provides an overview and prior estimates of seventeen heuristic algorithms implemented in C++ and tested on both data sets. The details of the research methodology are provided, the computational scenario is presented. In the course of computational experiments, the comparative figures are obtained and on their basis multi-objective optimization is provided. Overall, the group of Pareto-optimal algorithms for different N consists of some of the MC, SC, NN, DENN, CI, GRD, CI + 2-Opt, GRD + 2-Opt, CHR and LKH heuristics.

About the Authors

S. M. Avdoshin
National Research University Higher School of Economics
Russian Federation


E. N. Beresneva
National Research University Higher School of Economics
Russian Federation


References

1. Applegate, D., Bixby, R., Chvatal, V., Cook, W. The Traveling Salesman Problem: A Computational Study, Princeton: Princeton University Press, 2011.

2. Beresneva (Chirkova), E.N., Avdoshin, S.M. Pareto-optimal Algorithms for Metric TSP: Experimental Research. International Journal of Open Information Technologies , 5, № 5, pp. 16-24, 2017, ISSN: 2307-8162.

3. Department of Combinatorics and Optimization at the University of Waterloo. Status of VLSI Data Sets. University of Waterloo (web-site). Доступно по ссылке: http://www.math.uwaterloo.ca/tsp/vlsi/summary.html, дата обращения 29.04.2017.

4. University of Waterloo. National Travelling Salesman Problems. UWaterloo, (web-site). Доступно по ссылке: http://www.math.uwaterloo.ca/tsp/world/countries.html, дата обращения 16.04.2017.

5. Flood, M.M. The traveling-salesman problem. Operation research, vol. 4, pp. 61-75, 1956.

6. Rosenkrantz, D. Stearns, R., Lewis II, P. An analysis of several heuristics for the traveling salesman problem, 6, pp. 563-581, 1977.

7. Cook, W.J. Combinatorial optimization, New York: Wiley, 1998.

8. Hahsler, M., Hornik, K. TSP — Infrastructure for the Traveling Salesperson Problem, 23, № 2, 2007.

9. Christofides, N. Graph theory — An Algorithmic Approach, New York: Academic Press, 1974.

10. Christofides, N. Worst-case analysis of a new heuristic for the travelling salesman problem. Graduate School of Industrial Administration, CMU, 1976.

11. Buchin, K. Space-Filling Curves. Organizing Points Sets: Space-Filling Curves, Delaunay Tessellations of Random Point Sets, and Flow Complexes, Berlin, Free University of Berlin, 2007, pp. 5-30.

12. Bartholdi, J., Platzman, L., Collins R., Warden, W. A Minimal Technology Routing System for Meals on Wheels, 13, № 3, pp. 1-8, 1983.

13. Aarts, E., Lenstra, J. Local Search in Combinatorial Optimization, Princeton, New Jersey: Princeton University Press, 2003.

14. Helsgaun, K. An effective implementation of the Lin–Kernighan traveling salesman heuristic, EJOR, 12, pp. 106-130, 2000.

15. Helsgaun, K. LKH (web-site). Доступно по ссылке: http://www.akira.ruc.dk/~keld/research/LKH, дата обращения 24.02.2017.

16. Gorkemli, B., Karaboga, D. Quick Combinatorial Artificial Bee Colony -qCABC- Optimization Algorithm for TSP, 1, № 5, 2013.


Review

For citations:


Avdoshin S.M., Beresneva E.N. The Metric Travelling Salesman Problem: The Experiment on Pareto-optimal Algorithms. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(4):123-138. https://doi.org/10.15514/ISPRAS-2017-29(4)-8



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)