Creating Test Data for Market Surveillance Systems with Embedded Machine Learning Algorithms
https://doi.org/10.15514/ISPRAS-2017-29(4)-18
Abstract
About the Authors
O. MoskalevaRussian Federation
A. Gromova
Russian Federation
References
1. FCA (financial conduct authority) (online). Available at: https://handbook.fca.org.uk/
2. SEC (Securities and Exchange Commission) (online). Available at: https://www.sec.gov/
3. FINMAR Financial Stability and Market Confidence Sourcebook (online publication). Available at: https://handbook.fca.org.uk/handbook/FINMAR/
4. Cao L., Ou Y., Yu P.: Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors. In Proc. of KDD’10, Washington, DC, USA, July 25–28, 2010, pp. 85-93
5. Donoho S.: Early Detection of Insider Trading in Option Markets In Proc. of KDD’04, Seattle, Washington, USA, August 22–25, 2004, pp. 420-429
6. Luo C., Zhao Y., Cao L., Ou Y., Zhang C.: Exception Mining on Multiple Time Series in Stock Market. In Proc. of International Conference on Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM, 2008, pp. 690-693
7. Nasdaq and Digital Reasoning Establish Exclusive Alliance to Deliver Holistic Next Generation Surveillance and Monitoring Technology (online publication). Available at: http://www.digitalreasoning.com/buzz/nasdaq-and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-next-generation-surveillance-and-monitoring-technology.1884035, 23.02.2016
8. Ou Y., Cao L., Luo C., Liu L.: Mining Exceptional Activity Patterns in Microstructure Data. In Proc. of International Conference on Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM, 2008, pp. 884-887
9. Ou Y., Cao L., Yu T., Zhang C.: Detecting Turning Points of Trading Price and Return Volatility for Market Surveillance Agents. In Proc. of International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, IEEE/WIC/ACM, 2007, pp. 491-494
10. Murphy C., Kaiser G., Arias M.: An Approach to Software Testing of Machine Learning Applications. Proc of the 19th International Conference on Software Engineering and Knowledge Engineering (SEKE), Boston MA, Jul 2007, pp. 167-172
11. Nautiyal L, Preeti: A Novel Approach of Equivalence Class Partitioning for Numerical Input. ACM SIGSOFT Software Engineering Notes. Volume 41 Issue 1, 2016, pp. 1-5
12. Murphy C., Kaiser G., Arias M.: Parameterizing Random Test Data According to Equivalence Classes. Proc of the 2nd International Workshop on Random Testing (RT'07), Atlanta GA, Nov 2007, pp. 38-41
13. Murphy C., Kaiser G., Arias M.: A Framework for Quality Assurance of Machine Learning Applications. Columbia University Computer Science Technical Reports, New York, 2006
14. Murphy C., Kaiser G., Hu L., Wu L.: Properties of Machine Learning Applications for Use in Metamorphic Testing. Proc of the 20th International Conference on Software Engineering and Knowledge Engineering (SEKE), Redwood City CA, Jul 2008, pp. 867-872.
15. Zhang J., Wang Z., Zhang L., Hao D., Zang L., Cheng S., Zhang Lu.: Predictive Mutation Testing. In Proc. of ISSTA’16, Saarbrücken, Germany, July 18–20, 2016, pp. 342-353
Review
For citations:
Moskaleva O., Gromova A. Creating Test Data for Market Surveillance Systems with Embedded Machine Learning Algorithms. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(4):269-282. https://doi.org/10.15514/ISPRAS-2017-29(4)-18