Программа для мониторинга общественных настроений в России на основе сообщений из Twitter
https://doi.org/10.15514/ISPRAS-2017-29(4)-22
Аннотация
Список литературы
1. Charts | Google Developers. Google Developers (online). Доступно по ссылке: https://developers.google.com/chart/. [Дата обращения: 18.03.2017]
2. R. Collins, D. May, N. Weinthal, and R. Wicentowski, “SWAT-CMW: Classification of Twitter Emotional Polarity using a Multiple-Classifier Decision Schema and Enhanced Emotion Tagging,” Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 669-672, 2015. - 2015.
3. Corpus of short texts in Russian. Julia Rubtsova. (online). Доступно по ссылке: http://study.mokoron.com/. [Дата обращения: 18.03.2017]
4. Datastore - NoSQL Schemaless Database | Google Cloud Platform. Google Cloud Platform (online). Доступно по ссылке: https://cloud.google.com/datastore/. [Дата обращения: 18.03.2017]
5. L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, “Sentiment Analysis of Review Datasets Using Naïve Bayes‘ and K-NN Classifier,” International Journal of Information Engineering and Electronic Business, vol. 8, no. 4, pp. 54-62, Aug. 2016.
6. F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Discovering Periodic Patterns in Historical News,” Plos One, vol. 11, no. 11, 2016.
7. F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Seasonal Fluctuations in Collective Mood Revealed by Wikipedia Searches and Twitter Posts,” 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), 2016.
8. GeoNames. GeoNames (online). Доступно по ссылке: http://www.geonames.org/.
9. Google App Engine Documentation | App Engine Documentation | Google Cloud Platform. Google Cloud Platform (online). Доступно по ссылке: https://cloud.google.com/appengine/docs/. [Дата обращения: 18.03.2017]
10. E. Haddi, “Sentiment analysis: text, pre-processing, reader views and cross domains,” dissertation, 2015.
11. M. Korobov, “Morphological Analyzer and Generator for Russian and Ukrainian Languages,” Communications in Computer and Information Science Analysis of Images, Social Networks and Texts, pp. 320-332, 2015.
12. S. Kumar, S. Maskara, N. Chandak, and S. Goswami, “Empirical Study of Relationship between Twitter Mood and Stock Market from an Indian Context,” International Journal of Applied Information Systems, vol. 8, no. 7, pp. 33-37, 2015.
13. T. Lansdall-Welfare, F. Dzogang, and N. Cristianini, “Change-Point Analysis of the Public Mood in UK Twitter during the Brexit Referendum,” 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), 2016.
14. B. Le and H. Nguyen, “Twitter Sentiment Analysis Using Machine Learning Techniques,” Advanced Computational Methods for Knowledge Engineering Advances in Intelligent Systems and Computing, pp. 279-289, 2015.
15. A. Mitchell and P. Hitlin, “Twitter reaction to events often at odds with overall public opinion,” Pew Research Center, vol. 4, 2013.
16. Natural Language Toolkit. Natural Language Toolkit - NLTK 3.0 documentation (online). Доступно по ссылке: http://www.nltk.org/. [Дата обращения: 18.03.2017]
17. thinkBIG - Patterns in Big Data: Methods, Applications and Implications. thinkBIG. (online). Доступно по ссылке: http://thinkbig.enm.bris.ac.uk/. [Дата обращения: 18.03.2017]
18. Tweepy. Tweepy (online). Доступно по ссылке: http://www.tweepy.org/. [Дата обращения: 18.03.2017]
19. Twitter Developer Documentation - Twitter Developers. Twitter. (online). Доступно по ссылке: https://dev.twitter.com/docs. [Дата обращения: 18.03.2017]
20. Y. Wan and Q. Gao, “An Ensemble Sentiment Classification System of Twitter Data for Airline Services Analysis,” 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015.
Рецензия
Для цитирования:
Сметанин С.И. Программа для мониторинга общественных настроений в России на основе сообщений из Twitter. Труды Института системного программирования РАН. 2017;29(4):315-324. https://doi.org/10.15514/ISPRAS-2017-29(4)-22
For citation:
Smetanin S.I. The Program for Public Mood Monitoring through Twitter Content in Russia. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(4):315-324. https://doi.org/10.15514/ISPRAS-2017-29(4)-22