Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Software for adaptive grid construction

https://doi.org/10.15514/ISPRAS-2017-29(5)-15

Abstract

In this paper, we present a software package for the construction of an adaptive finite-difference grid by expanding physical variables into a sparse wavelet series. Some technical details of the program implementation are given. In particular, we describe data structures used for the grid representation in computer memory and tools for organizing parallel calculations on the adaptive grid. Also the results of several numerical simulations involving the developed package are shown.

About the Author

A. N. Semakin
Bauman Moscow State Technical University
Russian Federation


References

1. MacNeice P., Olson K. M., Mobarry C., deFainchtein R., Packer C. PARAMESH: A parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun., 126, 2000, pp. 330-354.

2. Berger M. J., LeVeque R. J. Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal., 35, 1998, pp. 2298-2316.

3. Deiterding R., Radovitzky R., Mauch S. P., Noels L., Cummings J. C., Meiron D. I. A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Eng. Comput., 22, 2006, pp. 325-347.

4. Bryan G. L. et al. Enzo: An adaptive mesh refinement code for astrophysics. 2013, arXiv:1307.2265.

5. Neeman H. Autonomous hierarchical adaptive mesh refinement for multiscale simulations. Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1996.

6. Parashar M., Browne J. C. On partitioning dynamic adaptive grid hierarchies. Proceedings of the 29th Annual Hawaii International Conference on System Sciences, 1996.

7. Quinlan D. Adaptive mesh refinement for distributed parallel architectures. Ph.D. dissertation, University of Colorado at Denver., 1993.

8. Hornung R. D., Kohn S. R. Managing application complexity in the SAMRAI object-oriented framework. Concurr. Comp. Pract. E., 14, 2002, pp. 347-368.

9. Walder R., Folini D. A-MAZE: A code package to compute 3D magnetic flows, 3D NLTE radiative transfer, and synthetic spectra. Thermal and Ionization Aspects of Flows from Hot Stars: Observations and Theory, ASP Conference Series, 204, 2000, pp. 281-284.

10. Almgren A. S., Bell J. B., Colella P., Howell L. H., Welcome M. L. A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comp. Phys., 142, 1998, pp. 1-46.

11. Popinet S., Rickard G. A tree-based solver for adaptive ocean modeling. Ocean Model., 16, 2007, pp. 224-249.

12. Holmstrom M. Solving hyperbolic PDEs using interpolating wavelets. SIAM J. Sci. Comput., 21, 1999, pp. 405-420.

13. Donoho D. L. Interpolating wavelet transforms. Department of Statistics. Stanford University, Tech. Rep., 1992.

14. Deslauriers G., Dubuc S. Symmetric iterative interpolation processes. Constr. Approx., 5, 1989, pp. 49-68.

15. Semakin A. N., Rastigejev Y. Numerical simulation of global-scale atmospheric chemical transport with high-order wavelet-based adaptive mesh refinement algorithm. Mon. Wea. Rev., 144, 2016, pp. 1469-1486.


Review

For citations:


Semakin A.N. Software for adaptive grid construction. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2017;29(5):311-328. (In Russ.) https://doi.org/10.15514/ISPRAS-2017-29(5)-15



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)