The efficiency comparison of solvers for sparse linear algebraic equations systems based on the BiCGStab and FGMRES methods
https://doi.org/10.15514/ISPRAS-2018-30(1)-13
Abstract
References
1. Saad Y. Iterative Methods for Sparse Linear Systems. N.Y.: PWS Publ., 1996. 547 p.
2. Schenk O., Gartner K. Solving unsymmetric sparse systems of linear equations with PARDISO // J. of Future Generation Computer Systems. 2004. № 20. P. 475–487.
3. PARDISO. URL: http://www.pardiso-project.org/ (accessed: 15.10.2017).
4. Intel® Math Kernel Library – Documentation. URL: https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation (accessed: 15.10.2017).
5. Marchevsky I.K., Puzikova V.V. Efficiency investigation of computation parallelization for viscous incompressible flow simulation on systems with shared memory. Vychislitel'nye metody i programmirovanie [Computational methods and programming], 2015. Vol. 16. P. 595–606 (in Russian)
6. ANSYS All Products. URL: http://www.ansys.com/products/all-products (accessed: 15.10.2017).
7. MSC Nastran. URL: http://www.mscsoftware.ru/products/msc-nastran (accessed: 15.10.2017).
8. ANSYS Fluent. URL: http://www.ansys.com/Products/Fluids/ANSYS-Fluent (accessed: 15.10.2017).
9. STAR-CD. URL: https://mdx.plm.automation.siemens.com/star-cd (accessed: 15.10.2017).
10. OpenFOAM® Documentation. URL: https://www.openfoam.com/documentation/ (accessed: 15.10.2017).
11. What is KRATOS. URL: http://www.cimne.com/kratos/about_whatiskratos.asp (accessed: 15.10.2017).
12. AMGCL documentation. URL: http://amgcl.readthedocs.io/en/latest/ (accessed: 15.10.2017).
13. foam-extend. URL: https://sourceforge.net/projects/foam-extend/ (accessed: 15.10.2017).
14. Portable, Extensible Toolkit for Scientific Computation. URL: https://www.mcs.anl.gov/petsc/ (accessed: 15.10.2017).
15. Van der Vorst H.A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comp. 1992. № 2. P. 631–644.
16. Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 1993. № 14. P. 461–469.
17. Balandin M.Yu., Shurina E.P. Metody reshenija SLAU bol'shoj razmernosti [Methods for large SLAE solving]Novosibirsk: NGTU publ., 2000. 70 p. (in Russian)
18. Wesseling P. An introduction to multigrid methods. Chichester: John Willey & Sons Ltd., 1991. 284 p.
19. Guilmineau E., Queutey P. А numerical simulation of vortex shedding from an oscillating circular. J. Fluid Struct. 2002. № 16. P. 773–794.
20. Cheny Y., Botella O. The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties. J.Comp. Phys.2010. №229. P.1043-1076.
21. Mittal R., Iaccarino G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005. № 37. P. 239–261.
22. Osher S., Fedkiw R.P. Level set methods and dynamic implicit surfaces. N. Y.: Springer, 2003. 273 p.
23. Marchevsky I.K., Puzikova V.V. The efficiency analysis of iterative methods for solving linear algebraic equations systems. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and numerical methods], 2014. № 4. P. 37-52 (in Russian)
Review
For citations:
Marchevsky I.K., Puzikova V.V. The efficiency comparison of solvers for sparse linear algebraic equations systems based on the BiCGStab and FGMRES methods. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2018;30(1):195-214. (In Russ.) https://doi.org/10.15514/ISPRAS-2018-30(1)-13