Automated generation of machine instruction decoders
https://doi.org/10.15514/ISPRAS-2018-30(2)-4
Abstract
About the Authors
N. Yu. FokinaRussian Federation
M. A. Solovev
Russian Federation
References
1. Ramsey N., Fernandez M.F. The New Jersey Machine-code Toolkit. Proceedings of the USENIX Technical Conference, 1995. pp. 289-302.
2. Ramsey N., Fernandez M.F. Specifying Representations of Machine Instructions. ACM Transactions on Programming Languages and Systems, 19(3), 1997. pp. 492-524.
3. Hsieh W.C., Engler D.R., Back G. Reverse-Engineering Instruction Encodings. Proceedings of the General Track: 2002 USENIX Annual Technical Conference, 2001. pp. 133-145.
4. Collberg C.S. Reverse Interpretation + Mutation Analysis = Automatic Retargeting. Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design and Implementation, 1997. pp. 57-70. DOI: 10.1145/258916.258922.
5. Collberg C.S. Automatic Derivation of Compiler Machine Descriptions. ACM Transactions on Programming Languages and Systems, 24(4), 2002. pp. 369-408. DOI: 10.1145/567097.567100.
6. Rubanov V.V., Mikheev A.S. Integrated Environment for Embedded Processors Instruction Set Description. Trudy ISP RAN/Proc. ISP RAS, 2006, vol. 9, pp. 143-158 (in Russian).
7. Krishna R., Austin T. Efficient Software Decoder Design. IEEE Computer Society Technical Committee on Computer Architecture Newsletter, 2001.
8. Theiling H. Generating Decision Trees for Decoding Binaries. Proceedings of the ACM SIGPLAN workshop on Languages, compilers and tools for embedded systems, 2001. pp. 112-120. DOI: 10.1145/384197.384213.
9. Qin W., Malik S. Automated Synthesis of Efficient Binary Decoders for Retargetable Software Toolkits. Proceedings of the 40th Annual Design Automation Conference, 2003. pp. 764-769. DOI: 10.1109/DAC.2003.1219122.
Review
For citations:
Fokina N.Yu., Solovev M.A. Automated generation of machine instruction decoders. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2018;30(2):65-80. (In Russ.) https://doi.org/10.15514/ISPRAS-2018-30(2)-4