On 2D gas dynamics simulation using RKDG method on structured rectangular meshes
https://doi.org/10.15514/ISPRAS-2018-30(2)-14
Abstract
About the Authors
V. N. KorchagovaRussian Federation
I. N. Fufaev
Russian Federation
S. M. Sautkina
Russian Federation
V. V. Lukin
Russian Federation
References
1. Harris R.E., Collins E., Sescu A., Luke E.A., Strutzenberg L.L., West J.S. High-order Discontinuous Galerkin and hybrid RANS/LES method for prediction of launch vehicle lift-off acoustic environments. 20th AIAA/CEAS Aeroacoustics Conference (Atlanta, GA). In Papers – American Institute of Aeronautics and Astronautics. 2014. No. 3.
2. Toulorge T. Efficient Runge–Kutta Discontinuous Galerkin Methods Applied to Aeroacoustic. PhD thesis. Katholieke Universiteit Leuven. 2012.
3. Bosnyakov I., Lyapunov S.V., Troshin A., Vlasenko V.V., Wolkov A.V. A High-Order Discontinuous Galerkin Method for External Aerodynamics. 32nd AIAA Applied Aerodynamics Conference, 2981.
4. Cockburn B. An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems. Lecture Notes in Mathematics. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, No. 1697, 1998, pp. 151-268.
5. Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Application of RKDG method for computational solution of three-dimensional gas-dynamic equations with non-structured grids. Mathematical Modeling and Computational Methods, vol. 4, No. 8, . 2015, pp. 75-91. doi: 10.18698/2309-3684-2015-4-7591 (in Russian).
6. Touze C.L., Murrone A., Guillard H. Multislope MUSCL method for general unstructured meshes. Journal of Computational Physics. 2015. No. 284. Pp. 389-418. doi: 10.1016/j.jcp.2014.12.032
7. Galepova V.D., Lukin V.V., Marchevsky I.K., Fufaev I.N. Comparative study of WENO and Hermite WENO limiters for gas flows numeriсal simulations using the RKDG method. KIAM Preprint № 131, Moscow, 2017, 32 p. doi:10.20948/prepr-2017-131 (in Russian).
8. Qiu J., Shu C.-W. Runge – Kutta Discontinuous Galerkin Method Using WENO Limiters. SIAM J. Sci. Comput., vol. 26, № 3, 2005, pp. 907-929. doi: 10.1137/S1064827503425298
9. Zhong X., Shu C.-W. A simple weighted essentially nonoscillatory limiter for Runge – Kutta discontinuous Galerkin methods. J. Comp. Phys., vol. 232, 2013, pp. 397-415. doi: 10.1016/j.jcp.2012.08.028
10. Zhu J., Zhong X., Shu C.-W., Qiu, J.-X. Runge – Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO limiter. Communications in Computational Physics, vol. 19, № 4, 2016, pp. 944-969. 10.4208/cicp.070215.200715a
11. Toro E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin: Springer, 2009, 724 p. doi: 10.1007/b79761
12. Cockburn B., Shu C.-W. TVB Runge – Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math. Comp., vol. 52, 1989, pp. 411-435. doi: 10.2307/2008474
13. Cockburn B., Shu C.-W. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems. Journal of Scientific Computing., vol. 16, issue 3, 2001, pp. 173-261. doi: 10.1023/A:1012873910884
14. Krivodonova L., Xin J., Remacle J.F., Chevaugeon N., Flaherty J.E. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws // Applied Numerical Mathematics, vol. 48, № 3-4, . 2004, pp. 323-338. doi: 10.1016/j.apnum.2003.11.002
15. Tam, C.K.W., Webb, J.C. Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics. Journal of Computational Physics, vol. 107, 1993, pp. 262-281. doi: 10.1006/jcph.1993.114
Review
For citations:
Korchagova V.N., Fufaev I.N., Sautkina S.M., Lukin V.V. On 2D gas dynamics simulation using RKDG method on structured rectangular meshes. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2018;30(2):285-300. (In Russ.) https://doi.org/10.15514/ISPRAS-2018-30(2)-14