Application of parallel algorithms for numerical simulation of quasi-one dimensional blood flow
https://doi.org/10.15514/ISPRAS-2018-30(2)-15
Abstract
About the Authors
A. N. AvdeevaRussian Federation
V. V. Puzikova
Russian Federation
References
1. Quarteroni A., Formaggia L. Mathematical Modelling and Numerical Simulation of the Cardiovascular System. Handbook on numerical analysis, Ed. By P. G. Ciarlet, J. L. Lions. Amsterdam: Elsevier, 2004, 101 p. DOI: 10.1016/S1570-8659(03)12001-7
2. Quarteroni A., Formaggia L., Veneziani A. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Milano: Springer, 2011, 526 p.
3. Goals – euHeart. URL: https http://www.euheart.eu/index_id_27.html (дата обращения: 09.05.2018).
4. Formaggia L., Lamponi D., Quarteroni A. One dimensional models for blood flow in arteries. Journal of Engineering Mathematics, vol. 47, 2003, pp. 251-276. DOI: 10.1023/B:ENGI.0000007980.01347.29.
5. Azer K., Peskin C. S. A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile. Cardiovasc. Eng., vol. 7, 2007, pp. 51–73. DOI: 10.1007/s10558-007-9031-y
6. Sherwin S. J., Franke V., Peiro J., Parker K. One-dimensional modeling of vascular network in space-time variables. Journal of Engineering Mathematics. vol. 47, 2003, pp. 217–250. DOI: 10.1023/B:ENGI.0000007979.32871.e2
7. Wang X., Delestre O., Fullana J.-M., Saito M., Ikenaga Y., Matsukawa M., Lagree P.-Y. Comparing different numerical methods for solving arterial 1D flows in networks. Comput. Methods Appl. Mech. Eng., vol. 15, 2012, pp. 61–62. DOI: 10.1080/10255842.2012.713677
8. Wang X., Fullana J.-M., Lagrée P.-Y. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model. Computer Methods in Biomechanics and Biomedical Engineering, 2014, pp.1-22. DOI: 10.1080/10255842.2014.948428
9. Avetisyan A.I., Babkova V.V., Gaisaryan S.S., Gubar' A.Yu. Development of parallel software for 3D tornado arising modeling by Nikolaevskiy theory. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulations], vol. 20, № 8, 2008, pp. 28–40 (in Russian)
10. Marchevskii I.K., Tokareva S.A. Comparison of the parallel algorithms effectiveness for solving gas dynamics problems on different computational complexes. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], № 1, 2009, pp. 90–97 (in Russian)
11. Marchevskii I.K., Shcheglov G.A. Application of parallel algorithms for solving hydrodynamic problems by the vortex element method. Vychislitel'nye metody i programmirovanie [Computational methods and programming], vol. 11, 2010, pp. 105–110 (in Russian)
12. Moreva V.S. Ways for calculation speed-up in solving 2D aerodynamics problems by vortex element method. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], № S, 2011, pp. 83–95 (in Russian)
13. Lukin V.V., Marchevskii I.K., Moreva V.S., Popov A.Yu, Shapovalov K.L., Shcheglov G.A. Educational-experimental computing cluster. Part 2. Examples of problem solving. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], № 4, 2012, pp. 82–102 (in Russian)
14. Marchevsky I.K., Puzikova V.V. Efficiency investigation of computation parallelization for viscous incompressible flow simulation on systems with shared memory. Vychislitel'nye metody i programmirovanie [Computational methods and programming], vol. 16, 2015, pp. 595–606 (in Russian)
15. Puzikova V.V. Realization of parallel computations in the software package «LS-STAG_turb» for viscous incompressible flow simulation on systems with shared memory. Trudy ISP RAN / Proc. ISP RAS, vol. 28, issue 1. 2016, pp. 221-242. DOI: 10.15514/ISPRAS-2016-28(1)-13 (in Russian)
16. MPICH Overview | MPICH. URL: https://www.mpich.org/about/overview/ (accessed: 09.05.2018).
17. Avetisyan A.I., Gaisaryan S.S., Ivannikov V.P., Padaryan V.A. Productivity prediction of MPI programs based on models. Autom. Remote Control., vol. 68, 2007, pp. 750-759. DOI: 10.1134/S0005117907050037
18. Intel (R) Cillk (TM) Plus | Intel® Software. URL: https://software.intel.com/ru-ru/node/522579 (accessed: 09.05.2018).
19. Reinders J. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism. Sebastopol: O'Reilly, 2007, 336 p.
20. OpenMP FAQ – OpenMP. URL: https://www.openmp.org/about/openmp-faq/ (дата обращения: 09.05.2018).
21. Quarteroni A., Valli A. Domain decomposition methods for partial differential equations. Oxford: Clarendon Press, 1999, 360 p.
22. Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko A.N., Prokopov G.P. Numerical solution of gas dynamics multidimensional problems. Moscow: Science Publ., 1976. 400 p. (in Russian)
23. Drongowski P., Lei Yu, Swehosky F., Suthikulpanit S., Richter R., Incorporating Instruction-Based Sampling into AMD CodeAnalyst. 2010 IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS 2010), White Plains, NY, 2010, pp. 119-120. DOI: 10.1109/ISPASS.2010.5452049.
24. Gergel' V.P. High-performance computing for multi-core systems. Moscow: Moscow University Publ., 2010, 544 p. (in Russian)
25. Lukin V.V., Marchevskii I.K. Educational-experimental computing cluster. Part 1. Tools and capabilities. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], № 4, 2011, pp. 28–43 (in Russian)
Review
For citations:
Avdeeva A.N., Puzikova V.V. Application of parallel algorithms for numerical simulation of quasi-one dimensional blood flow. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2018;30(2):301-316. (In Russ.) https://doi.org/10.15514/ISPRAS-2018-30(2)-15