Medical Images Segmentation Operations
https://doi.org/10.15514/ISPRAS-2018-30(4)-12
Abstract
About the Authors
S. A. MusatianRussian Federation
A. V. Lomakin
Russian Federation
S. Yu. Sartasov
Russian Federation
L. K. Popyvanov
Russian Federation
I. B. Monakhov
Russian Federation
A. S. Chizhova
Russian Federation
References
1. Wagner M.E., Gellrich N.C., Friese K.I. et al. Model-based segmentation in orbital volume measurement with cone beam computed tomography and evaluation against current concepts. International Journal of Computer Assisted Radiology and Surgery, vol. 11, issue 1, 2016, pp 1–9
2. Jean-Franois D, Andreas B. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation. Radiation Oncology, 2013, 8:154
3. Yushkevich P.A. Piven J., Hazlett H.C. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, vol. 31, issue 3, 2006, pp. 1116-1128
4. Doyle, S., Vasseur, F., Dojat, M., Forbes, F. Fully Automatic Brain Tumor Segmentation from Multiple MR Sequences using Hidden Markov Fields and Variational EM. In Procs. of the NCI-MICCAI BRATS, 2013, pp. 18-22
5. Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S. Template-based multimodal joint generative model of brain data. Lecture Notes in Computer Science, vol. 9123, 2015, pp. 17-29
6. H. N. Bharath, S. Colleman, D. M. Sima, S. Van Huffel. Tumor Segmentation from Multimodal MRI Using Random Forest with Superpixel and Tensor Based Feature Extraction. Lecture Notes in Computer Science, vol. 10670, 2018, pp. 463-473.
7. Chi-Hoon Lee, Mark Schmidt, Albert Murtha, Aalo Bistritz, Jöerg Sander, Russell Greiner. Segmenting brain tumors with conditional random fields and support vector machines. Lecture Notes in Computer Science, vol. 3765, 2005, pp. 469-478
8. Kamnitsas K., Ledig C., Newcombe V.F.J., Simpson J.P., Kane A.D., Menon D.K., Rueckert D., Glocker B. Efficient multi-scale 3DCNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, vol. 36, 2017, pp. 61-78.
9. G. Wang, W. Li, S. Ourselin, T. Vercauteren. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. Lecture Notes in Computer Science, vol. 10670, 2018, pp. 178-190
10. Menze B.H., Jakab A., Bauer S. et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging, vol. 34, issue 10, 2015, pp. 1993-2024
11. Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras et al. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data, vol. 4, 2017, Article number: 170117
12. Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter. Self-Normalizing Neural Networks. Advances in Neural Information Processing Systems, vol. 30, 2017
13. L.K. Hansen and P Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, issue 10, 1990, pp. 993- 1001
14. J. van Doorn. Analysis of deep convolutional neural network architectures. Available at: https://pdfs.semanticscholar.org/6831/bb247c853b433d7b2b9d47780dc8d84e4762.pdf, accessed: 13.06.2018
15. Hahnloser R.H., Sarpeshkar R., Mahowald M.A., Douglas R.J., Seung H.S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, vol. 405, 2000, pp. 947–951
16. O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, vol. 9351, 2015, pp. 234-241
17. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, vol. 15, issue 1, 2014, pp. 1929-1958
Review
For citations:
Musatian S.A., Lomakin A.V., Sartasov S.Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images Segmentation Operations. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2018;30(4):183-194. https://doi.org/10.15514/ISPRAS-2018-30(4)-12