Preview

Труды Института системного программирования РАН

Расширенный поиск

Современные методы аспектно-ориентированного анализа эмоциональной окраски

https://doi.org/10.15514/ISPRAS-2015-27(5)-1

Полный текст:

Аннотация

Данная работа посвящена обзору методов решения актуальной на сегодняшний день задачи аспектно-ориентированного анализа эмоциональной окраски текстов. Данная задача решалась в рамках нескольких конференций, посвященных автоматическому анализу текстов на естественном языке. Организаторы конференций предлагали участникам площадки для сравнительного тестирования методов. В рамках данной работы рассмотрены методы решения задачи аспектно-ориентированного анализа эмоциональной окраски, предложенные участниками двух таких международных площадок: SemEval-2015 и SentiRuEval-2015.

Об авторах

И. А. Андрианов
ИСП РАН
Россия


В. Д. Майоров
ИСП РАН
Россия


Д. Ю. Турдаков
ИСП РАН; ВМК МГУ; ФКН НИУ ВШЭ
Россия


Список литературы

1. Pontiki M., Galanis D., Papageorgiou H., Manandhar S., Androutsopoulos I. SemEval-2015 Task 12: Aspect Based Sentiment Analysis. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 486-495.

2. Loukachevitch N., Blinov P., Kotelnikov E., Rubtsova Y., Ivanov V., Tutubalina E. SentiRuEval: Testing Object-oriented Sentiment Analysis Systems in Russian. Proceedings of the 21st International Conference on Computational Linguistics Dialog-2015, 2015, volume 2, pp. 12-24.

3. Ratinov L., Roth D. Design challenges and misconceptions in named entity recognition. Proceedings of the Thirteenth Conference on Computational Natural Language Learning, 2009, pp. 147-155.

4. Lafferty J., McCallum A., Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. Proceedings of the Eighteenth International Conference on Machine Learning, 2001, pp. 282-289.

5. Vapnik V. Statistical Learning Theory. Wiley, New York, NY, 1998.

6. Collins M. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. Proceedings of the ACL-02 conference on Empirical methods in natural language processing, 2002, volume 10, pp. 1-8.

7. Ramshaw L. A., Marcus M. P. Text chunking using transformation-based learning. Natural language processing using very large corpora, Springer Netherlands, 1999, pp. 157-176.

8. San Vicente I., Saralegi X., Agerri R. EliXa: A modular and flexible ABSA platform. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 748-752.

9. Toh Z., Su J. NLANGP: Supervised Machine Learning System for Aspect Category Classification and Opinion Target Extraction. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 496-501.

10. Guha S., Joshi A., Varma V. SIEL: Aspect Based Sentiment Analysis in Reviews. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 759-766.

11. Hamdan H., Bellot P., Bechet F. Lsislif: CRF and Logistic Regression for Opinion Target Extraction and Sentiment Polarity Analysis. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 753-758.

12. Koppula A., Pallelra R., Repaka R., Movva V. UMDuluth-CS8761-12: A Novel Machine Learning Approach for Aspect Based Sentiment Analysis. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 742-747.

13. Brown P. F., Desouza P. V., Mercer R. L., Pietra V. J. D., Lai J. C. Class-based n-gram models of natural language. Computational linguistics, 1992, volume 18, issue 4, pp. 467-479.

14. Hartigan J. A., Wong M. A. Algorithm AS 136: A k-means clustering algorithm. Applied statistics, 1979, pp. 100-108.

15. Mikolov T., Yih W., Zweig G. Linguistic Regularities in Continuous Space Word Representations. Proceedings of HLT-NAACL, 2013, pp. 746-751.

16. Clark A. Combining distributional and morphological information for part of speech induction. Proceedings of the tenth conference on European chapter of the Association for Computational Linguistics, 2003, volume 1, pp. 59-66.

17. Eisner J. M. Three new probabilistic models for dependency parsing: An exploration. Proceedings of the 16th conference on Computational linguistics, 1996, volume 1, pp. 340-345.

18. De Clercq O., Van de Kauter M., Lefever E. and Hoste V. LT3: Applying Hybrid Terminology Extraction to Aspect-Based Sentiment Analysis. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 719-724.

19. Auer S., Bizer C., Kobilarov G., Lehmann J., Cyganiak R., Ives Z. Dbpedia: A nucleus for a web of open data. Springer Berlin Heidelberg, 2007, pp. 722-735.

20. Miller G. A. WordNet: a lexical database for English. Communications of the ACM, 1995, volume 38, issue 11, pp. 39-41.

21. Garcia-Pablos A., Cuadros M., Rigau G. V3: Unsupervised Aspect Based Sentiment Analysis for SemEval-2015 Task 12. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 714-718.

22. Yates R. B., Neto B. R. Modern Information Retrieval. ADDISON-WESLEY, New York, 1999, pp. 501.

23. Page L., Brin S., Motwani R., Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab, 1999, pp. 17.

24. Owen A. B. Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 1988, volume 75, issue 2, pp. 237-249.

25. Rubtsova Y. V., Koshelnikov S. A. Aspect Extraction Using Conditional Random Fields. http://www.dialog-21.ru/digests/dialog2015/materials/pdf/RubtsovaYVKoshelnikovSA.pdf, 2015.

26. Mayorov V., Andrianov I., Astrakhantsev N., Avanesov V., Kozlov I., Turdakov D. A High Precision Method for Aspect Extraction in Russian. Proceedings of the 21st International Conference on Computational Linguistics Dialog-2015, 2015, volume 2, pp. 58-67.

27. Астраханцев Н. А. Автоматическое извлечение терминов из коллекции текстов предметной области с помощью Википедии. Труды ИСП РАН, 2014, том 26, выпуск 4, с. 7-20.

28. Blinov P. D., Kotelnikov E. V. Semantic Similarity for Aspect-Based Sentiment Analysis. Proceedings of the 21st International Conference on Computational Linguistics Dialog-2015, 2015, volume 2, pp. 36-45.

29. Tarasov D. S. Deep Recurrent Neural Networks for Multiple Language Aspect-based Sentiment Analysis of User Reviews. Proceedings of the 21st International Conference on Computational Linguistics Dialog-2015, 2015, volume 2, pp. 77-88.

30. Elman J. Finding structure in time. Cognitive science, 1990, volume 14(2), pp. 179-211.

31. Schuster M., Kuldip K. P. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, volume 45(11), pp. 2673-2681.

32. Hochreiter S., Schmidhuber J. Long short-term memory. Neural computation, 1997, volume 9(8), pp. 1735 -1780.

33. Mikolov T., Karafiat M., Burget L., Cernocky J., Khudanpur S. Recurrent neural network based language model. In INTERSPEECH, 2010, pp. 1045-1048.

34. Werbos P. J. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 1990, volume 78(10), 1550-1560.

35. Jimenez-Zafra S., Martınez-Camara E., Martın-Valdivia M., Urena-Lopez L. SINAI: Syntactic approach for Aspect Based Sentiment Analysis. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 730-735.

36. Zhang Z., Lan M. ECNU: Extracting Effective Features from Multiple Sequential Sentences for Target-dependent Sentiment Analysis in Reviews. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval-2015), 2015, pp. 736-741.

37. Ramos J. Using tf-idf to determine word relevance in document queries. Proceedings of the first instructional conference on machine learning, 2003, pp. 45-65.

38. Press S. J., Wilson S. Choosing between logistic regression and discriminant analysis. Journal of the American Statistical Association, 1978, volume 73, issue 364, pp. 699-705.

39. Church K. W., Hanks P. Word association norms, mutual information, and lexicography. Computational linguistics, 1990, volume 16, issue 1, pp. 22-29.

40. Friedman J. H. Stochastic gradient boosting. Computational Statistics & Data Analysis, 2002, volume 38, issue 4, pp. 367-378.


Для цитирования:


Андрианов И.А., Майоров В.Д., Турдаков Д.Ю. Современные методы аспектно-ориентированного анализа эмоциональной окраски. Труды Института системного программирования РАН. 2015;27(5):5-22. https://doi.org/10.15514/ISPRAS-2015-27(5)-1

For citation:


Andrianov I..., Mayorov V..., Turdakov D... Modern Approaches to Aspect-Based Sentiment Analysis. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2015;27(5):5-22. (In Russ.) https://doi.org/10.15514/ISPRAS-2015-27(5)-1

Просмотров: 154


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)