Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Time invariant hand gesture recognition for human-computer interaction

https://doi.org/10.15514/ISPRAS-2014-26(4)-8

Abstract

Hand motion driven human-computer interface based on novel time-invariant gesture description is proposed. Description is represented as a sequence of overthreshold motion distribution histograms. Such description utilizes information about gesture spatial configuration and motion dynamics. K-nearest-neighbour classifier was trained on six gesture types. Application for remote slideshow control was developed based on the proposed algorithm.

About the Authors

D. Kostyrev
A.B. Kogan Research Institute for Neurocybernetics
Russian Federation


S. Anischenko
A.B. Kogan Research Institute for Neurocybernetics
Russian Federation


M. Petrushan
A.B. Kogan Research Institute for Neurocybernetics
Russian Federation


References

1. Rautaray S.S., Agrawal A. A real time hand tracking system for interactive applications. International Journal of Computer Applications. 2011, vol. 18, no 6, pp. 28-33.

2. Shan C., Tan T., Wei Y. Real - time hand tracking using a mean shift embedded particle filter. Pattern Recognition. 2007, vol. 40, no 7, pp. 1958-1970. doi: 10.1016/j.patcog.2006.12.012

3. Davis J. W. Recognizing Movement using Motion Histograms. Technial Report 487, MIT Media Lab. 1999. vol. 1, no 487. doi: 10.1.1.46.6887

4. Torres G. Gesture recognition using motion detection. University of Kansas. 2009.

5. Banerjee P., Sengupta S. Human motion detection and tracking for video surveillance. Proceedings of the national Conference of Communications, IIT Bombay, Mumbai. 2008, pp. 88-92

6. Stauffer C., Grimson W.E.L. Adaptive background mixture models for real-time tracking. Computer Vision and Pattern Recognition. 1999. IEEE Computer Society Conference on. IEEE. 1999, vol. 2. doi: 10.1109/CVPR.1999.784637

7. Cutler R., Davis L. Robust Real - time periodic motion detection, analysis, and applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2000, vol. 22, no. 8. pp. 781-796. doi: 10.1.1.112.8904

8. Mori G., Belongie S., Malik J. Efficient shape matching using shape contexts. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2005, vol. 27, no. 11. pp. 1832-1837. doi: 10.1109/TPAMI.2005.220

9. Fogelton A. Real-time Hand Tracking using Modificated Flocks of Features Algorithm. Information Sciences and Technologies Bulletin of the ACM Slovakia, Special Section on Student Research in Informatics and Information Technologies. 2011, vol. 3, no 2, pp. 37-41. doi: 10.1.1.295.2305

10. Manresa C., Varona J., Mas R. Perales F. J. Real - time hand tracking and gesture recognition for human - computer interaction. Electronic Letters on Computer Vision and Image Analysis. 2005, vol. 5, no. 3, pp. 96-104.

11. Deng L.Y., Hung J.C., Keh H., Lin K., Liu Y., Huang N. Real - time hand gesture recognition by shape context based matching and cost matrix. Journal of networks. 2011, vol. 6, no 5, pp. 697-704. doi:10.4304/jnw.6.5.697-704

12. Sobral, Andrews. BGSLibrary: An OpenCV C++ Background Subtraction Library. Proceedings of IX Workshop de Visao Computacional (WVC'2013). 2013.


Review

For citations:


Kostyrev D., Anischenko S., Petrushan M. Time invariant hand gesture recognition for human-computer interaction. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2014;26(4):99-112. (In Russ.) https://doi.org/10.15514/ISPRAS-2014-26(4)-8



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)