Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Linguistic Approach to Suicide Detection

https://doi.org/10.15514/ISPRAS-2014-26(4)-9

Abstract

Suicide is a major, preventable public health problem. Particularly the problem is critical for young people. In Russia every year thousands of teenagers commit suicide. In most of the cases it can be prevented if a risky state is detected. Nowadays internet becomes a major way of communication, mainly in the text form. Therefore we suggest a method to detect a tendency to suicide based on text messages. Our main approach is to study indicators of such condition and based on it use machine learning approach to build a classifier that could determine, whether the person is about to commit a suicide. Our experiments are based on the analysis of texts of Russian writers for past 100 years that committed suicide.

About the Authors

L. Ermakova
Perm State National Research University; Institut de Recherche en Informatique de Toulouse
Russian Federation


S. Ermakov
Institut de Recherche en Informatique de Toulouse
Russian Federation


References

1. Wasserman, D., Cheng, Q., Jiang, G.X.: Global suicide rates among young people aged 15-19. World psychiatry. 4, pp. 114-120 (2005).

2. Paci, W.R.O.W. Towards Evidence-Based Suicide Prevention Programmes. World Health Organization, Western Pacific Region (2010).

3. SK: V Rossii rezko vozroslo chislo detskikh samoubijstv [Committee of inquiry: The number of children suicide dramatically increased in Russia], http//www.rg.ru/2012/10/24/deti.html. (in Russian)

4. World Health Organization: Preventing suicide : a resource for counsellors.

5. Gomez, D.D., Blasco-Fontecilla, H., Sukno, F., Ramos-Plasencia, M.S., Baca-Garcia, E. Suicide attempters classification: Toward predictive models of suicidal behavior. Neurocomputing. 92, pp. 3-8 (2012).

6. Early detection of depression and prevention of suicide, http://www.philstar.com/science-and-technology/147031/early-detection-depression-and-prevention-suicide.

7. Hjelmeland, H. Cultural Context Is Crucial in Suicide Research and Prevention, (2011).

8. Kostin, R.А., Shamkova, S.V. Suitsidy v molodezhnoj srede Sankt-Peterburga: sotsiologicheskij analiz [Suicide among the young people of Saint Petersburg: sociological analysis]. Sankt-Peterburgskij gos. universitet servisa i ehkonomiki [Saint-Petersburg state university of service and economy] (2007). (in Russian)

9. Pang, B., Lee, L. Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval. 2, pp. 1-135 (2008).

10. Jia, L., Yu, C.T., Meng, W. Improve the effectiveness of the opinion retrieval and opinion polarity classification. In: Shanahan, J.G., Amer-Yahia, S., Manolescu, I., Zhang, Y., Evans, D.A., Kolcz, A., Choi, K.-S., and Chowdhury, A. (eds.) CIKM. pp. 1415-1416. ACM (2008).

11. Eguchi, K., Lavrenko, V. Sentiment Retrieval using Generative Models. In: Jurafsky, D. and Gaussier, É. (eds.) EMNLP. pp. 345-354. ACL (2006).

12. Mukherjee, S., Bhattacharyya, P. Feature Specific Sentiment Analysis for Product Reviews. CoRR. abs/1209.2352, (2012).

13. Witten, I.H., Frank, E., Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Amsterdam (2011).

14. Chetviorkin, I.I., Loukachevitch, N.V. Sentiment analysis track at ROMI P 2012, (2013).

15. Ermakov, S., Ermakova, L. Sentiment Classification Based on Phonetic Characteristics. In: Serdyukov, P., Braslavski, P., Kuznetsov, S., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., and Yilmaz, E. (eds.) Advances in Information Retrieval. pp. 706-709. Springer Berlin Heidelberg (2013).

16. Chkhartishvili, G. Pisatel' i samoubijstvo.[Writers and suicide]. (2007). (in Russian)

17. Segalovich, I. A fast morphological algorithm with unknown word guessing induced by a dictionary for a web search engine. Proceedings of MLMTA. (2003).

18. Powers, D.M.W. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. School of Informatics and Engineering, Flinders University, Adelaide, Australia (2007).

19. Piao, S., Tsuruoka, Y., Ananiadou, S. Sentiment Analysis with Knowledge Resource and NLP Tools. The International Journal of Interdisciplinary Social Sciences. 4, pp. 17-28 (2012).


Review

For citations:


Ermakova L., Ermakov S. Linguistic Approach to Suicide Detection. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2014;26(4):113-122. (In Russ.) https://doi.org/10.15514/ISPRAS-2014-26(4)-9



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)