Batch Symmetric Fully Homomorphic Encryption Using Matrix Polynomials
https://doi.org/10.15514/ISPRAS-2014-26(5)-5
Abstract
References
1. [1]. R. L. Rivest, L. Adleman, M. L. Dertouzos. On data banks and privacy homomorphisms. Foundations of secure computation. 1978, Vol. 4, №. 11. pp. 169-180
2. [2]. C. Gentry. Fully homomorphic encryption using ideal lattices. Proceedings of the 41st annual ACM symposium on Symposium on theory of computing-STOC'09. – ACM Press, 2009. Vol. 9, pp. 169-169. doi:10.1145/1536414.1536440
3. [3]. A. Silverberg. Fully homomorphic encryption for mathematicians. Women in Numbers 2: Research Directions in Number Theory, 2013. Vol. 606. p. 111.
4. [4]. N.P. Varnovskij, А.V. Shokurov. Gomomorfnoe shifrovanie. [Homomorphic encryption]. Trudy ISP RАN [The Proceedings of ISP RAS], 2007. Vol. 12, pp. 27-36. (in Russian).
5. [5]. O. Zhirov, O. V. Zhirova, and S. F. Krendelev. Bezopasnye oblachnye vychisleniya s pomoshhyu homomorfnoj cryptographii. [Secure cloud computing using homomorphic cryptography]. BIT (bezopasnost’ informacionnyx technology) journal [Security of Information Technologies Magazine], 2013, Vol. 1, pp. 6–12. (in Russian).
6. [6]. Nigel P. Smart, F. Vercauteren. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. Public Key Cryptography-PKC 2010: 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010, Proceedings. – Springer, 2010. p. 420.
7. [7]. Naehrig M., Lauter K., Vaikuntanathan V. Can homomorphic encryption be practical? Proceedings of the 3rd ACM workshop on Cloud computing security workshop. – ACM, 2011. pp. 113-124. doi: 10.1145/2046660.2046682
8. [8]. C. Gentry, S. Halevi, N. P. Smart. Fully homomorphic encryption with polylog overhead. Advances in Cryptology–EUROCRYPT 2012. – Springer Berlin Heidelberg, 2012. pp. 465-482. doi: 10.1007/978-3-642-29011-4_28
9. [9]. Cheon, J. H., Coron, J. S., Kim, J., Lee, M. S., Lepoint, T., Tibouchi, M., Yun, A. Batch Fully Homomorphic Encryption over the Integers. Advances in Cryptology–EUROCRYPT. – Vol. 7881. – 2013. pp. 315-335. doi: 10.1007/978-3-642-38348-9_20
10. [10]. Z. Brakerski, C. Gentry, S. Halevi. Packed ciphertexts in LWE-based homomorphic encryption. Public-Key Cryptography–PKC 2013. – Springer Berlin Heidelberg, 2013. – pp. 1-13. doi: 10.1007/978-3-642-36362-7_1
11. [11]. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T. Packed homomorphic encryption based on ideal lattices and its application to biometrics. Security Engineering and Intelligence Informatics. – Springer Berlin Heidelberg, 2013. pp. 55-74.
12. [12]. Nigel P. Smart, F. Vercauteren. Fully homomorphic SIMD operations. Designs, codes and cryptography, 2014. Vol. 71, №. 1. – pp. 57-81. doi: 10.1007/s10623-012-9720-4
13. [13]. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T. Practical packing method in somewhat homomorphic encryption. Data Privacy Management and Autonomous Spontaneous Security. – Springer Berlin Heidelberg, 2014. pp. 34-50.
14. [14]. Zhirov A., Zhirova O., Krendelev S. F. Practical fully homomorphic encryption over polynomial quotient rings. Internet Security (WorldCIS), 2013 World Congress on. – IEEE, 2013. pp. 70-75. doi: 10.1109/WorldCIS.2013.6751020
15. [15]. Hojsík M., Půlpánová V. A fully homomorphic cryptosystem with approximate perfect secrecy. Proceedings of the 13th international conference on Topics in Cryptology. – Springer-Verlag, 2013. pp. 375-388. doi: 10.1007/978-3-642-36095-4_24
16. [16]. J. Domingo-Ferrer. A Provably Secure Additive and Multiplicative Privacy Homomorphism*. Information Security. – Springer Berlin Heidelberg, 2002. pp. 471-483.
17. [17]. Gavin G. An efficient FHE based on the hardness of solving systems of non-linear multivariate equations. IACR Cryptology ePrint Archive, 2013. №. 262.
18. [18]. Albrecht, M. R., Farshim, P., Faugere, J. C., Perret, L. Polly cracker, revisited. Advances in Cryptology–ASIACRYPT 2011. – Springer Berlin Heidelberg, 2011. pp. 179-196.
19. [19]. Herold G. Polly cracker, revisited, revisited. Public Key Cryptography–PKC 2012. – Springer Berlin Heidelberg, 2012. – pp. 17-33.
20. [20]. Armknecht, F., Augot, D., Perret, L., Sadeghi, A. R. On constructing homomorphic encryption schemes from coding theory. Cryptography and Coding. – Springer Berlin Heidelberg, 2011. – pp. 23-40.
21. [21]. Rostovtsev A., Bogdanov A., Mikhaylov M. Metod bezopasnogo vychislenija polinoma v nedoverennoj srede s pomowqju gomomorfizmov kolec [Secure evaluation of polynomial using privacy ring homomorphisms]. Problemy informacionnoj bezopasnosti. Kompqjuternye sistemy [Information security issues. Computer systems], 2011. Vol. 2. – pp. 76-85. (in Russian).
22. [22]. Wagner D. Cryptanalysis of an algebraic privacy homomorphism. Proc. of 6th Information Security Conference (ISC'03). – 2003. doi: 10.1.1.5.1420
23. [23]. Trepacheva A., Babenko L. Known plaintexts attack on polynomial based homomorphic encryption. Proceedings of the 7th International Conference on Security of Information and Networks. – ACM, 2014. – pp. 157. doi: 10.1145/2659651.2659692
24. [24]. Ph. Burtyka, O. Makarevich. Symmetric Fully Homomorphic Encryption Using Decidable Matrix Equations. Proceedings of the 7th International Conference on Security of Information and Networks. ACM, 2014, pp. 186–196. doi: 10.1145/2659651.2659693
25. [25]. F. B. Burtyka. Simmetrichnoe polnost'ju gomomorfnoe shifrovanie s ispol'zovaniem neprivodimyh matrichnyh polinomov [Symmetric fully homomorphic encryption using irreducible matrix polynomials]. Izvestija Juzhnogo federal'nogo universiteta. Tehnicheskie nauki [Proceedings of Southern Federal University. Engineering sciences], 2014, Vol. 158, №. 9, pp. 107-122. (in Russian).
26. [26]. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D. J. Private database queries using somewhat homomorphic encryption. Applied Cryptography and Network Security. – Springer Berlin Heidelberg, 2013. – pp. 102-118. doi: 10.1007/978-3-642-38980-1_7
27. [27]. S. Halevi, V. Shoup. Algorithms in HElib. IACR Cryptology ePrint Archive, 2014. №. 106.
28. [28]. S. Halevi. (2012) Performance of HElib. [Online]. Available: http://mpclounge.files.wordpress.com/2013/04/hespeed.pdf (Visited on 18.12.2014)
29. [29]. Burtyka Ph. B. O slozhnosti naxozhdenija kornej bulevyx matrichnyx polinomov [On the complexity of finding the roots of Boolean matrix polynomials]. Matematicheskoe modelirovanie [Matematical modelling], 2015. Vol. 27, №. 7. (in Russian).
30. [30]. Dennis, Jr J. E., Traub J. F., Weber R. P. The algebraic theory of matrix polynomials. SIAM Journal on Numerical Analysis, 13(6), 1976. pp. 831-845.
31. [31]. Dennis, Jr J. E., Traub J. F., Weber R. P. Algorithms for solvents of matrix polynomials. SIAM Journal on Numerical Analysis, 1978. Vol. 15. – №. 3. – pp. 523-533.
32. [32]. Antoine Guellier. Can Homomorphic Cryptography ensure Privacy? [Research Report] RR-8568, 2014, pp.111. https://hal.inria.fr/hal-01052509v1
Review
For citations:
Burtyka P. Batch Symmetric Fully Homomorphic Encryption Using Matrix Polynomials. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2014;26(5):99-116. (In Russ.) https://doi.org/10.15514/ISPRAS-2014-26(5)-5