Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

On application of GPUs for modelling of hydrodynamic characteristics of screw marine propellers in OpenFOAM package

https://doi.org/10.15514/ISPRAS-2014-26(5)-8

Abstract

OpenFOAM is a proven engineering tool for applied hydrodynamics numerical modeling which is typically characterized by complex geometries and large grids of 107-108 cells. Since such calculations are often very long and resource-intesive, any way of speeding them up is of high practical interest. Based on one practical problem of a screw propeller characteristics modeling, optimizations to OpenFOAM via the originally developed SLAE solution plugin is proposed. The plugin is based on SparseLinSol (SLS) library, developed by the authors. The library uses Krylov subspace iterative methods with the Classic AMG preconditioner to effectively solve large SLAEs on supercomputers and features original hybrid communications model which implements MPI and Posix Shared Memory combination. The library also is able to utilize NVIDIA GPU accelerators for a significant part of the implemented algorithms. Test results on 128-node computational system equipped with NVIDIA X2070 accelerators show that: (i) OpenFOAM numerical modeling results are close to those achieved with Star-CCM package and experimental results; (ii) developed SLAE solution methods are more robust than those implemented in original OpenFOAM GAMG-based SLAE solver; (iii) hybrid communication model improves solver scalability a lot and the solver scales linearly up to the maximum number of nodes used in current tests; (iv) GPU usage makes calculations 1.4-3 times faster; (v) SLS solver is faster than hypre solver on the same set of implemented methods and test matrices

About the Authors

B. Krasnopolsky
Institute of Mechanics, Lomonosov Moscow State University; JSC T-Services
Russian Federation


A. Medvedev
JSC T-Services
Russian Federation


A. Chulyunin
Institute of Mechanics, Lomonosov Moscow State University
Russian Federation


References

1. B. Krasnopol'skij, A. Medvedev. O reshenii sistem linejnykh algebraicheskikh uravnenij na mnogojadernykh vychislitel'nykh sistemakh s graficheskimi uskoriteljami [On solution of systems of linear algebraic eqautions on multicore systems with GPU accelerators]. Parallel'nye vychislitel'nye tekhnologii (PaVT'2013): trudy mezhdunarodnoj nauchnoj konferencii (1–5 aprelja 2013, Cheljabinsk) [Parallel Computing technologies (PaCT'2013): proceedings of international scientific conference (April 1–5, 2013, Chelyabinsk)]. Cheljabinsk: Izdatel'skij centr ÜUrGU, 2013. 637 p., pp 409–420 (in Russian).

2. B. Krasnopol'skij, A. Medvedev. Algoritmicheskie osobennosti sozdanija mnogosetochnogo reshatelja SLAU na vychislitel'nykh sistemakh s graficheskimi uskoriteljami [Algorithmic aspects of development the multigrid slae solver for computer systems with GPU accelerators]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, serija «Informacionnye tekhnologii» [Vestnik of Lobachevsky State University of Nizhni Novgorod, "Information Technology" series], 2, 2014. pp. 210-217 (in Russian).

3. F. Menter. Two-equation Eddy-viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32 (8), 1994. pp. 1598-1605.

4. H.A. Van der Vorst. BI-CGSTAB: a Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput., 13, 1992. pp. 631–644.

5. U. Trottenberg, C.W. Oosterlee, A. Schuller. Multigrid. Academic Press, 2000. 631 p.

6. Hypre: a Library of High Performance Preconditioners. https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html. Дата обращения 18.12.2014.

7. N. Bell, M. Garland. Efficient Sparse Matrix-vector Multiplication on CUDA. NVIDIA Corporation, Tech. Rep. NVR-2008-004. 2008.

8. A. Monakov, A. Lokhmotov, A. Avetisyan. Automatically Tuning Sparse Matrix-vector Multiplication for GPU Architectures. High Performance Embedded Architectures and Compilers, ser. Lecture Notes in Computer Science, 5952, 2010. pp. 111–125.

9. J. Kraus, M. Frster, T. Brandes, T. Soddemann, Using LAMA for Efficient AMG on Hybrid Clusters. Computer Science - Research and Development, 28 (2-3), 2013. pp. 211–220.

10. M. Lobachev, N. Ovchinnikov, A. Pustoshnyj. Chislennoe modelirovanie raboty grebnogo vinta v neodnorodnom potoke [Numerical modeling of marine propeller in a nonuniform flow]. Trudy CNII im. akad. A.N. Krylova [Proceedings of Krylov Shipbuilding Research Institute Acad. A.N. Krylov], 333(6), 2009. pp. 5-10 (in Russian).

11. M. Peric, V .Bertram. Trends in Industry Applications of CFD for Maritime Flows. 10-th International Conference on Computer and IT Applications in the Maritime Industries. Berlin, Germany, 2011. pp. 8-18. http://www.gl group.com/pdf/Trends_in_Industry_Applications_of_CFD_for_Maritime_Flows.pdf


Review

For citations:


Krasnopolsky B., Medvedev A., Chulyunin A. On application of GPUs for modelling of hydrodynamic characteristics of screw marine propellers in OpenFOAM package. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2014;26(5):155-172. (In Russ.) https://doi.org/10.15514/ISPRAS-2014-26(5)-8



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)