Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Automatic Extraction of New Concepts from Domain-Specific Terms

Abstract

This paper describes a novel approach for recognition of domain-specific terms that exist in the knowledge base but represent new concepts. Our method can be applied to informal knowledge bases – it requires only semantic similarity between concepts and statistics of terms extracted from the corpus. We show that our method outperforms existing approaches and improves precision of word sense disambiguation algorithm.

About the Author

N. A. Astrakhantsev
ISP RAS, Moscow
Russian Federation


References

1. Mallery J. C. Thinking about foreign policy: Finding an appropriate role for artificially intelligent computers. Master’s thesis. MIT Political Science Department, 1988.

2. Turdakov D. Y. Word sense disambiguation methods. Programming and Computer Software, 2010. vol. 36. no 6. pp. 309–326. doi: 10.1134/S0361768810060010

3. Erk K. Unknown word sense detection as outlier detection. Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, 2006. pp. 128–135. doi: 10.3115/1220835.1220852

4. Аstrakhantsev N., Turdakov D. Automatic construction and enrichment of informal ontologies: A survey. Programming and Computer Software, 2013. vol. 39. no 1. pp. 23–34. doi: 10.1134/S0361768813010039

5. Biemann C. Ontology learning from text: A survey of methods. LDV forum. 20. 2005. pp. 75–93.

6. Agirre E., Edmonds P. G. Word sense disambiguation: Algorithms and applications. Springer Science+ Business Media. 2006. 33.

7. Erk K., Pado S. Shalmaneser–a toolchain for shallow semantic parsing. Proceedings of LREC. 6. 2006.

8. Faatz A., Steinmetz R. Ontology enrichment with texts from the www. Semantic Web Mining, 2002.

9. Chifu E. T., Le Ia I. A. Text-based ontology enrichment using hierarchical self-organizing maps. 2008.

10. Georgiu M., Groza A. Ontology enrichment using semantic wikis and design patterns.

11. Grineva M., Grinev M., Lizorkin D. Effective extraction of thematically grouped key terms from text. Proc. of the AAAI 2009 Spring Symposium on Social Semantic Web, 2009. pp. 39–44.

12. El-Beltagy S. R., Rafea A. KP-Miner: A keyphrase extraction system for English and Arabic documents. Information Systems, 2009. vol. 34, no 1. pp. 132-144. doi: 10.1016/j.is.2008.05.002

13. Pazienza M. T., Pennacchiotti M., Zanzotto F. M. Terminology extraction: an analysis of linguistic and statistical approaches. Knowledge Mining. Springer, 2005. pp. 255–279. doi: 10.1007/3-540-32394-5_20

14. Ivannikov V., Turdakov D., Nedumov Y. Fast Text Annotation with Linked Data. Eighth International Conference on Computer Science and Information Technologies 26–30 September. 2011. Yerevan, Armenia.

15. Manning C. D., Schutze H. Foundations of statistical natural language processing. MIT press, 1999. p. 237.

16. Breiman L. Random forests. Machine learning, 2001. vol. 45, no 1. pp. 5–32. doi: 10.1023/A:1010933404324

17. Manning C. D., Schutze H. Foundations of statistical natural language processing. MIT press, 1999. pp. 589–594.


Review

For citations:


Astrakhantsev N.A. Automatic Extraction of New Concepts from Domain-Specific Terms. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2013;25:167-178. (In Russ.)



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)