Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

On Solving The Systems of Algebraic Equations Using Gröbner Bases

Abstract

Described and proved the algorithm for finding some solution of algebraic equations over arbitrary field k for zero dimension ideals if Gröbner basis of this ideal over lexicographic order is given. The found Solution lies in the algebraic closure of k. An example for a system of algebraic equations having a unique solution in the main field, and exponentially many solutions of this system is suggested.

About the Author

Alexander Shokurov
ISP RAS, Moscow
Russian Federation


References

1. B.L. van der Waerden, Algebra I, Achte Auflage der Modernen Algebra, Springer-Verlag Berlin New York 1971. Algebra II, Fünfte Auflage, Springer-Verlag Berlin New York 1967.

2. Shokurov A.V., Sravnenie slozhnostej zadach nakhozhdeniya bazisa Groybnera ideala i reshenij e’togo ideala [Comparing complexities of problems of determining of Grebner’s basis of ideal and solving this ideal]. Trudy ISP RAN [The Proceedings of ISP RAS], 2012, vol. 22, pp. 463-474. (in Russian)

3. Faugere J.C., Gianni P., Lazard D., Mora T., Efficient computation of zero-dimensional Gröbner bases by change of ordering, Journal of Symbolic Computation, 1993,v.16, issue 4,pp.329-344.


Review

For citations:


Shokurov A. On Solving The Systems of Algebraic Equations Using Gröbner Bases. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2013;25:195-206. (In Russ.)



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)