Optimal Ordering of Conflicting Objects and the Traveling Salesman Problem
Abstract
About the Authors
Alexey VoevodinRussian Federation
Semen Kosyachenko
Russian Federation
References
1. Kuzyurin N.N., Fomin S.А. Effektivnye algoritmy i slozhnost' vychislenij [Efficient algorithms and computational complexity]. Uchebnoe posobie [Tutorial]. Moscow, MIPT’ Publ., 2007. 312 с.
2. http://en.wikipedia.org/wiki/Travelling_salesman_problem
3. Peter Komjach: http://mathoverflow.net/questions/30270/maximum-number-of-mutually-equidistant-points-in-an-n-dimensional-euclidean-spac, geometry - Maximum number of mutually equidistant points in an n-dimensional Euclidean space is (n+1)_ Proof – MathOverflow, answered Jul 2, 2010.
4. Alan George, Joseph W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1981 – 324 pages.
5. Sergio Pissanetzky. Sparse Matrix Technology. Academic Press, 1984 – 321 pages.
6. Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford. Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill. 2009 [1990].
Review
For citations:
Voevodin A., Kosyachenko S. Optimal Ordering of Conflicting Objects and the Traveling Salesman Problem. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2013;25:207-224. (In Russ.)