Min_с: стратегия неоднородной концентрации задач для энергосберегающих компьютерных расписаний
https://doi.org/10.15514/ISPRAS-2015-27(6)-23
Аннотация
Об авторах
Ф. Армента-КаноМексика
А. Черных
Мексика
Х. М. Кортес-Мендоза
Мексика
Р. Яхьяпур
Германия
А. Ю. Дроздов
Россия
П. Буври
Люксембург
Д. Клязович
Люксембург
А. И. Аветисян
Россия
С. Несмачнов
Уругвай
Список литературы
1. D. Kliazovich, J. E. Pecero, A. Tchernykh, P. Bouvry, S. U. Khan, A. Y. Zomaya, CA-DAG: Modeling Communication-Aware Applications for Scheduling in Cloud Computing, Journal of Grid Computing, 2015.
2. A. Beloglazov, J. Abawajy, and R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing, Future Gener. Comput. Syst., vol. 28, no. 5, pp. 755-768, May 2012.
3. J. Luo, X. Li, and M. Chen, Hybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centers, Expert Syst. Appl., vol. 41, no. 13, pp. 5804-5816, Oct. 2014.
4. C.-H. Hsu, K. D. Slagter, S.-C. Chen, and Y.-C. Chung, Optimizing Energy Consumption with Task Consolidation in Clouds, Inf. Sci., vol. 258, pp. 452-462, Feb. 2014.
5. S. Hosseinimotlagh, F. Khunjush, and S. Hosseinimotlagh, A Cooperative Two-Tier Energy-Aware Scheduling for Real-Time Tasks in Computing Clouds, in Proceedings of the 2014 22Nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Washington, DC, USA, 2014, pp. 178-182.
6. X. Wang, X. Liu, L. Fan, and X. Jia, A Decentralized Virtual Machine Migration Approach of Data Centers for Cloud Computing, Math. Probl. Eng., vol. 2013, p. e878542, Aug. 2013.
7. Y. Gao, Y. Wang, S. K. Gupta, and M. Pedram, An Energy and Deadline Aware Resource Provisioning, Scheduling and Optimization Framework for Cloud Systems,” in Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Piscataway, NJ, USA, 2013, pp. 31:1-31:10.
8. L. Luo, W. Wu, W. T. Tsai, D. Di, and F. Zhang, Simulation of power consumption of cloud data centers, Simul. Model. Pract. Theory, vol. 39, pp. 152-171, Dec. 2013.
9. Z. Liu, R. Ma, F. Zhou, Y. Yang, Z. Qi, and H. Guan, “Power-aware I/O-Intensive and CPU-Intensive applications hybrid deployment within virtualization environments,” in 2010 IEEE International Conference on Progress in Informatics and Computing (PIC), 2010, vol. 1, pp. 509-513.
10. A. Lezama, A. Tchernykh, R. Yahyapour, Performance Evaluation of Infrastructure as a Service Clouds with SLA Constraints. Computación y Sistemas 17(3): 401-411 (2013).
11. S. B. Matthias Splieth, “Analyzing the Effect of Load Distribution Algorithms on Energy Consumption of Servers in Cloud Data Centers,” 2015.
12. A. Tchernykh, L. Lozano, U. Schwiegelshohn, P. Bouvry, J. Pecero, S. Nesmachnow: Energy-Aware Online Scheduling: Ensuring Quality of Service for IaaS Clouds. International Conference on High Performance Computing & Simulation (HPCS 2014), pp 911-918, Bologna, Italy (2014).
13. A. Tchernykh, U. Schwiegelsohn, R. Yahyapour, N. Kuzjurin: Online Hierarchical Job Scheduling on Grids with Admissible Allocation, Journal of Scheduling 13(5):545-552 (2010)
14. A. Tchernykh, J. Ramírez, A. Avetisyan, N. Kuzjurin, D. Grushin, S. Zhuk,: Two Level Job-Scheduling Strategies for a Computational Grid. In R. Wyrzykowski et al. (eds.) Parallel Processing and Applied Mathematics, 6th International Conference on Parallel Processing and Applied Mathematics. Poznan, Poland, 2005, LNCS 3911, pp. 774-781, Springer-Verlag (2006).
15. B. Dorronsoro, S. Nesmachnow, J. Taheri, A. Zomaya, E-G. Talbi, P. Bouvry: A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems. Sustainable Computing: Informatics and Systems 4:252-261 (2014).
16. A. Tchernykh, J. Pecero, A. Barrondo, E. Schaeffer: Adaptive Energy Efficient Scheduling in Peer-to-Peer Desktop Grids, Future Generation Computer Systems, 36:209-220 (2014).
17. J.M. Ramírez, A. Tchernykh, R. Yahyapour, U. Schwiegelshohn, A. Quezada, J. González, A. Hirales: Job Allocation Strategies with User Run Time Estimates for Online Scheduling in Hierarchical Grids. Journal of Grid Computing 9:95-116 (2011).
18. S. Iturriaga, S. Nesmachnow, B. Dorronsoro, P. Bouvry: Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search. Computing and Informatics 32(2):273-294 (2013)
19. U. Schwiegelshohn, A. Tchernykh: Online Scheduling for Cloud Computing and Different Service Levels, 26th Int. Parallel and Distributed Processing Symposium Los Alamitos, CA, pp. 1067-1074 (2012).
20. A. Tchernykh, L. Lozano, U. Schwiegelshohn, P. Bouvry, J. Pecero, S. Nesmachnow, A. Drozdov: Online Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service. Journal of Grid Computing, Springer-Verlag, DOI 10.1007/s10723-015-9340-0 (2015).
21. Parallel Workload Archive [Online, November 2014]. Available at http://www.cs.huji.ac.il/labs/parallel/ workload
22. Grid Workloads Archive [Online, November 2014]. Available at http://gwa.ewi.tudelft.nl
23. E. Zitzler: Evolutionary algorithms for multiobjective optimization: Methods and applications, PhD thesis, Swiss Federal Institute of Technology. Zurich (1999)
24. D. Tsafrir, Y. Etsion, D. Feitelson: Backfilling Using System-Generated Predictions Rather than User Runtime Estimates. IEEE Transactions on Parallel and Distributed Systems 18 (6), pp.789-803 (2007)
25. F. Armenta-Cano, A. Tchernykh, J. M. Cortés-Mendoza, R. Yahyapour, A. Drozdov, P. Bouvry, D. Kliazovich, A. Avetisyan: Heterogeneous Job Consolidation for Power Aware Scheduling with Quality of Service. Proceedings of the 1st Russian Conference on Supercomputing - Supercomputing Days 2015, Moscow, Russia, September 28-29, 2015. Editors V. Voevodin, S. Sobolev. Published on CEUR-WS: 22-Oct-2015, Vol-1482, p. 687-697. ONLINE: http://ceur-ws.org/Vol-1482/, URN: urn:nbn:de:0074-1482-7
Рецензия
Для цитирования:
Армента-Кано Ф., Черных А., Кортес-Мендоза Х.М., Яхьяпур Р., Дроздов А.Ю., Буври П., Клязович Д., Аветисян А.И., Несмачнов С. Min_с: стратегия неоднородной концентрации задач для энергосберегающих компьютерных расписаний. Труды Института системного программирования РАН. 2015;27(6):355-380. https://doi.org/10.15514/ISPRAS-2015-27(6)-23
For citation:
Armenta-Cano F., Tchernykh A., Cortés-Mendoza J.M., Yahyapour R., Drozdov A.Yu., Bouvry P., Kliazovich D., Avetisyan A.I., Nesmachnow S. Min_c: heterogeneous concentration policy for power aware scheduling. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2015;27(6):355-380. (In Russ.) https://doi.org/10.15514/ISPRAS-2015-27(6)-23